
T O D D D. M U R P H E Y

A C T I V E R O B O T L E A R N I N G

Contents

Introduction 1

Optimal Control: Dynamics and Direct Methods 4

Integral Equations and Nonlinear Iterative Optimization 10

State Transition, Convolution, and Riccati Equations 17

Iterative Optimization, Maximum Principle, and Two Point Boundary Value Problems
21

Probability 26

Beliefs and Particle Filters 32

Kalman Filters 39

Entropy 42

Maximum Likelihood & Fisher Information 44

Posterior Probabilities & Infotaxis 50

Ergodicity 56

A Geometry Perspective of Ergodic Metric 60

Control Synthesis for Ergodic Objectives 65

Nonparametric vs. Parametric Estimation/Models 68

Moving onto Function Approximation 75

Appendix 79

Sequential Action Control 79

1

Introduction

Relevant Books:

Amazingly, there are none. As a result, you all are guinea pigs.

Classical Control and Learning versus Active Learning

p(xt

)

p(xt

)

p(xt-1

)

x = f (x, u)

x = f (x, u + noise)

Figure 1: Classical passive learning
and control versus active learning and
control

AL In the classical, passive view of machine learning (or estimation/-
filtering or system identification), data is acquired and then passed
through an algorithm (e.g., some machine learning algorithm) to ar-
rive at a model. In the setting of active learning the data is connected to
actions taken (e.g., by a robot moving in space), and those actions are
determined by a combination of the model and the learning process
itself.

Motivating Examples

1

2

3

4

5

A B C D E F G
(a) (b) (c)

Figure 2: Active sensing scenarios. (a)
what should your strategy be to get
from somewhere in the environment to
the dot? (b) How should you determine
the number of dark marbles in a bag
from only drawing one marble at a
time? (c) How should you discriminate
between objects in a bag?

Imagine that you need to use beams labeled 1-5 and A-G to get
from the pictured initial condition to the final position shown in the
figure. What is the right strategy. Without taking into consideration
the sensor, you could just design a trajectory that is simply a line
from the initial condition to the final location. But if there is uncer-
tainty in the evolution, the beams (that give you labels 1-5 and A-G
any time you cross them) provide extra information. Even more so,
finding an intersection of two beams tells you exactly where you are,
so finding the intersection of beam 2 and beam E would be partic-
ularly advantageous. From that location, the impact of uncertainty
will be at its minimum because the target location is so close to the
intersection location.

A simple example

Suppose you have a very simple system, like that seen in Fig 3. You
can move in R2—up and down, right and left—and can take binary

2

measurements. These observations o(t) are either “0” when the re-
gion is light or “1” when the region is dark. Can you make it to the
goal state, noted by the ∗ in the figure? Here we have a state x gov-
erned by the differential equation ẋ = u and a measurement model

that looks like Υ =

{
1 if x ∈ dark
0 if x ∈ light

. Probably one should expect

that this model is slightly uncertain, so adding noise to the model
could make sense.

*
x0

(a) (b)

Figure 3: Imagine traversing a map
with a binary sensor that can only read
“0” in light areas and “1” in dark areas.
This is likely the most simple sensor
imaginable. How would you use it to
get to the target ∗?

U
nc

er
ta

in
ty

Time

a "1" is
detected

(a) (b)

possible x0 Figure 4: When the robot is moving—
for instance, moving up—it is taking
measurements and becoming more
certain of where it is. When it reads
“0" the robot knows it cannot have
started in a place right below a black
line (e.g., the bottom right corner). It
will eventually hit a dark region of
the map and read a “1". When it does
so, its certainty changes dramatically,
because now it knows it can only be
along the edge between light and dark
and that it must have started a certain
distance below a dark region.

How will the uncertainty evolve as a function of movement? Con-
sider Fig. 3(b), where the robot starts in a light region and takes sev-
eral steps “up”. As it does so, it receives “0” after “0”, confirming it
was not in the region just below a shaded in region (e.g., the two pos-
sible initial points on the bottom of Fig. 4(b)). Then, eventually, it hits
a dark region and suddenly it knows that it is along one of the bot-
tom contours (thus eliminating the possibilities of starting at either
of the initial points on the top of Fig. 4(b)). These precipitous jumps
in uncertainty, seen in Fig. 4 are great for the robot. They potentially
mean that the robot can ignore incremental probability updates in
favor of looking for these large jumps in information.

Components of Active Sensing and Active Learning

1. States x that can be impacted by decisions u; these are functions of
time.

2. Uncertain parameters θ that can be estimated through sensory
observations o (also functions of time).

3

3. Sensors:

(a) range sensors

(b) cameras

(c) touch sensors (binary contact sensor, pressure, temperature,
shear force, texture)

(d) exotic nonlinear sensors, like electrosense.

4. Dynamic models describing how the sensor can move.

ẋ = f (x, u) x(0) = x0

where x ∈ Rn, u ∈ Rm, and f (·, ·) is a vector field. This motion
model typically comes from either a principle (e.g., Newton’s laws
∑ F = ma or Kirchhoff’s laws or some such principle) or from data.

5. Measurement model Υ(x) describing sensor physics and sensor
noise. This sensor model can come from physical modeling or
from data.

6. Uncertainty models. Where does the uncertainty come from?

(a) Is it from noise (e.g., stochastic forcing, like Brownian motion)?

(b) Is it from spatial uncertainty (e.g., occlusions).

(c) Is there uncertainty in what you are trying to find (e.g., dis-
tractors that look like what you are looking for)?

(d) Is there uncertainty about structure of the world (e.g., how
many predators are trying to eat you)?

7. Filters. These update beliefs about the world, typically represented
as parameters.

8. Transition models of the world. This is a way of modeling how the
world might behave. For example, you might be tracking some-
thing, and your model of how it behaves will not be anywhere
near as good

9. Information measures. These will be the measures used to drive
decisions.

(a) How would you measure the value of visiting a region to
improve your own state?

(b) How would you measure the value of visiting a region to
improve your understanding of someone else’s state?

These will form the outline of the class, as we cover control, esti-
mation, information theory, and techniques in active learning.

4

Optimal Control: Dynamics and Direct Methods

To develop a theory of active learning, we need to be able to translate
data about the world into actions. Our focus here will be methods
that focus on optimality criteria for doing so. Optimality criteria
are not the only possible criteria one could use to drive actions—
one could, for instance, simply define a proportional response to
state, such as is done in PID control of linear systems—but optimal-
ity conceptually extends to many situations and systems that other
techniques cannot treat.

There are several pieces involved in specifying a problem through
optimality-based principles. These include a description of the dy-
namics, an objective function that represents the goal and distin-
guishes between good and bad outcomes. The ability to take deriva-
tives of the dynamics and the objective will play a critical role in
simplifying the procedural aspects of optimizing a function.

Dynamic Models

Typically a robotic system can be described by an ordinary differen-
tial equation.

ẋ = f (x, u) x(0) = x0 (1)

In this equation we have the state x ∈ Rn, the control u ∈ Rm, and
assume that f is at least differentiable with respect to both x and u.

 θ

u1

u2

y

x

Figure 5: A vehicle capable of turning
in place and moving forward

Examples include:

1. ẋ = u, the single integrator system, where x ∈ R and u ∈ R.

2.

[
ẋ
ẏ

]
=

[
0 1
0 0

] [
x
y

]
+

[
0
1

]
u, the double integrator system

ẍ = u.

3.

 ẋ
ẏ
θ̇

 =

 cos(θ)u1

sin(θ)u1

u2

, the differential drive vehicle.

Note that sometimes variables like x will be used to denote vector
or components of vectors. This will generally not lead to confusion,

even when we say things like x =

[
x
y

]
.

Objective functions

Objective functions generally come in a standardized form. We will
see later that this standardized form is not always what we are look-
ing for, but this provides a basis for thinking about optimization.

5

J(x(t), u(t)) =
∫ T

0
`(x(t), u(t))dt + m(x(T)) (2)

Like the dynamic equations of motion, we will assume that `(·, ·) is
at least differentiable with respect to x(t) and u(t).

Example of an objective function:

J(x(t), u(t)) =
∫ T

0

1
2
(x(t)− xd(t))TQ(x(t)− xd(t))+

1
2

u(t)T Ru(t)dt+
1
2
(x(T)− xd(T))T P1(x(T)− xd(T))

where Q ≥ 0, R > 0, P1 ≥ 0. (That is, these are matrices and they are
either positive semi-definite or positive definite, meaning that when
their arguments are nonzero they either return a positive number or,
in the case of semi-definiteness, can also return zero. For instance, we

could have Q =

[
1 0
0 0.1

]
, R = [1], and P1 =

[
103 0
0 10

]
for the

double integrator dynamics above.
Our goal is to optimize J, only using trajectories of Eq.(1). This

optimization over a curve u(t) or the pair (x(t), u(t)) is an infinite
dimensional optimization.

Taking Derivatives: D f and ∇ f

There are two notions of derivative, the Frechét and Gateaux deriva-
tives. They both assume that states and the values of objective func-
tions are elements of vector spaces—sets where addition and scalar
multiplication make sense. Moreover, differentiation outside of the
scalar-valued case requires a norm to be well defined, as we see mo-
mentarily.

Definition 1. A mapping f : X → Y (X and Y both vector spaces)
is (Frechét) differentiable at x0 ∈ X if there is a continuous linear
mapping D f (x0) : X → Y such that

lim
‖z‖X→0

‖ f (x0 + z)− f (x0)− D f (x0) · z‖Y
‖z‖X

= 0.

Note that in this definition we have x0 + z, x0 ∈ X and f (·) of these
quantities are in Y.

To make sense of this notion of derivative, let’s go back to what we
learned in introductory calculus of one variable:

d f
dx

(x0) = lim
h→0

f (x0 + h)− f (x0)

h
.

Now, rearranging terms by moving the left hand side of the defini-
tion over to the right hand side, we get

0 = lim
h→0

f (x0 + h)− f (x0)− d f
dx (x0) · h

h
.

6

Why do we need the norms? Without the norms, we do not know
what it means to “divide by” the denominator h. Even if we did, it
would mean the definition would depend on the particular value h
takes on. Instead, we require that the numerator and denominator be
replaced by the norms of those elements of the vector space.

In both these definitions, d f
dx (x0) is said to approximate f to first-

order at x0.

Definition 2. Another notion of derivative is

D f (x) · h =
d f
dx

(x) · h =
d
dε
|ε=0 f (x + εz) z ∈ X.

This is a weaker notion of derivative and is called the Gateaux deriva-
tive. However, this is the notion of derivative that we will use in
practice because it is procedurally easy to work with. Any Frechét
derivative that exists can be evaluated using the Gateaux deriva-
tive. However, a Gateaux derivative existing does not imply that the
Frechét derivative exists.

EXAMPLE 1. Let’s take the derivative using the Gateaux derivative.
Assume that f : R2 → R2

f

([
x
y

])
=

[
x2

x + y2

]
.

You can probably guess that

D f

([
x
y

])
=

[
2x 0
1 2y

]
.

However, let us find the derivative using the Gateaux derivative.
Then d

dε |ε=0 f (x + εz) (where I am using x and z as vectors, purely for
notational convenience) gives us

d
dε

f

([
x + εw
y + εz

])
|ε=0 =

d
dε

[
(x + εw)2

(x + εw) + (y + εz)2

]
|ε=0 =

[
2xw + 2εw2

w + 2yz + 2εz2

]
|ε=0

=

[
2xw

w + 2yz

]
=

[
2x 0
1 2y

] [
w
z

]
Or, equivalently, using vector notion we can obtain the same result.

d
dε

f

([
x
y

]
+ ε

[
w
z

])
|ε=0 = D f

([
x
y

])
·
[

w
z

]
|ε=0 =

[
2x 0
1 2y

] [
w
z

]
Moreover, we know that the derivative allows us to locally approxi-
mate the function.

f

([
x
y

]
+ ε

[
w
z

])
≈ f

([
x
y

])
+ ε

[
2x 0
1 2y

] [
w
z

]

7

EXAMPLE 2. Now, suppose that J(x(t)) = 1
2

∫ 1
0 x(t)2dt, where

x(t) ∈ R. How do we differentiate J with respect to x(t)? Choose an
arbitrary perturbation z(t) and evaluate d

dε |ε=0 J(x(t) + εz(t)).

d
dε

J(x(t)+ εz(t))|ε=0 =
1
2

∫ 1

0

d
dε

(x(t)+ εz(t))2dt|ε=0 =
1
2

∫ 1

0
(2x(t)z(t)+ 2εz(t)2)dt|ε=0 =

∫ 1

0
x(t)z(t)dt

EXAMPLE 3. Suppose that f (x, u) is the right hand side of the equa-
tions of motion for the differential drive car. What does the derivative
of those equations look like? Hint:

D f (x, u) ◦ (δx, δu) = D1 f (x, u)δx + D2 f (x, u)δu,

where Di f is the derivative of the function f with respect to its ith

component—called the slot derivative.

Note that the gradient ∇ f (x) is defined by the inner product (i.e.,
the dot product) in the following way.

D f (x) · z = 〈∇ f (x), z〉

This defines the gradient, so for every inner product, one gets a new
gradient. This is not something to get too worried about for our
purposes, but it does help make more sense out of the fact that the
gradient ∇ f (x) is added to the vector x, implying they belong to the
same vector space.

Direct Methods in Optimal Control

Assuming that both an objective function and the dynamics are dif-
ferentiable, one common approach to computing an optimal u(t)
is to use constrained finite dimensional optimization to approxi-
mate the optimizer. There are very good—or at least pretty good—
optimization tools out there for constrained finite dimensional op-
timization (e.g., MATLAB’s fmincon(), SNOPT, and others). These
tools assume a problem of the form

min
x

h(x) such that g(x) = 0 (3)

where both h and g are assumed to be differentiable with respect
to x (and often times you need to provide the software with these
derivatives). Moreover, depending on the method used, inequality
constraints can often be imposed as well (e.g., g(x) ≥ 0); these can be
used to indicate input saturation or unsafe parts of the state.

How can we obtain such a finite dimensional description of the
optimization problem? Our approach will be to discretize both `

and f using quadrature to obtain something in the form of Eq. (3).
For instance, suppose that we use the definition of the derivative to

8

discretize the continuous dynamics, splitting the time interval [0, T]
up into N different pieces.

ẋ = f (x, u) =⇒ x(ti+1)− x(ti)

dt
≈ f (x(ti), u(ti))

which in turn implies the discrete time update law

x(ti+1) = x(ti) + dt f (x(ti), u(ti)).

Note that this equation holds for every time ti, so there are N of these
equations, all of which are constraints between x and u at various
times. Also, note that x(t0) = x0.

Moreover, we can discretize J using Riemann integration approxi-
mation of the integral.

J =
∫ T

0
`(x(t), u(t))dt + m(x(T)) ≈

N

∑
i=0

`(x(ti), u(ti))dt + m(x(tN))

x

y

t

ℓ

x0

x1

x2

f(x0

) actual

trajectory

f(x1

)

f(x2

)

t0 t1 t2 ... tN

Figure 6: Both the objective function
`(·) and dynamics can be discretized to
create a finite dimensional optimization
appropriate for direct methods. For
instance, on the left is shown a Riemann
sum approximation of the integral of
`, where the rectangles approximate
the area under the curve. On the right,
a trajectory is approximated with a
discrete-time solver, such as Euler
integration.

If we set

h(x(t1) : x(tN); u(t0) : u(tN−1)) =
N

∑
i=0

`(x(ti), u(ti))dt + m(x(T))

and set the constraints

g(x(t1) : x(tN); u(t0) : u(tN−1)) = x(ti+1)− x(ti)− dt f (x(ti), u(ti)) ∀i

then we have a problem of the needed form.

A few notes on direct methods

First, any quadrature/interpolation scheme can be used to generate
a finite dimensional description. The one I use above is Euler inte-
gration and Riemann integration of integrals, but one could use any
Runge-Kutta/implicit Euler/midpoint/etc scheme for the dynamics;
one could use any integration (e.g., trapezoidal rule, Simpson’s rule,

9

et cetera) for the objective function. Moreover, higher-order represen-
tations of both will be better for numerical purposes.

Second, note that one could impose the terminal goal at time T
as a constraint. For instance, one could say that x(tN) = xd(T) in
the list of constraints. If one gets a solution, this can be great. How-
ever, problems can become ill-conditioned, particularly if xd(T) is
somehow infeasible.

Exercise

Take the double integrator system, and using the Q, R, P1 from
above, implement (using fmincon or something similar) a direct opti-
mization with N = 10, 102, 103. Run each solution through a contin-
uous simulation of the system. How well do the optimized controls
work? What happens if you change the constraints to implicit Euler
or the midpoint rule?

Summing Up

The use of optimization as a model of how to go from environmental
estimates to control actions has a long history of being very success-
ful. We will want to find objective functions appropriate for active
learning. We should expect that we will want them to be differen-
tiable, based on what we have discussed here.

10

Integral Equations and Nonlinear Iterative Optimization

In this lecture we largely will talk about derivatives of integral
equations so that we can apply chain rule to an objective function
J(x(t), u(t)). First, we need to be able to represent an ordinary differ-
ential equation as an integral equation, to make it easier to differenti-
ate with respect to state and control variables.

Differential and integral equations

Let us remind ourselves of some things. Suppose we have a system
such as:

ẋ = f (x(t), u(t)) x(0) = x0.

(We will typically suppress the dependence on t to avoid too much
notation.) Then we know that an equivalent statement is that

x(t) = x0 +
∫ t

0
f (x(τ), u(τ))dτ.

This latter equation is the integral form of the differential equation. To
see that the two are equivalent, note that we can check if x(t) satisfies
the differential equation. By the Leibniz rule we know that

d
dt

[
x0 +

∫ t

0
f (x(τ), u(τ))dτ

]
= f (x(t), u(t)).

So x(t) satisfies the differential equation. Note that the differential
equation incorporates the initial condition nicely.

This integral representation of the ordinary differential equation is
now much easier to differentiate, specifically with respect to u. As
a result, we can apply chain rule to a cost function that depends on
x(t) and u(t) and evaluate the first derivative of J(x(t), u(t) with
respect to u(t). When that derivative is equal to zero (for all possible
directions v(t)), we know that we have a local minimizer, a local
maximizer, or possibly a saddle point.

Derivatives of Objective Functions with Dynamic Constraints

Let us say we have an optimal control system where we cannot glob-
ally optimize the system by setting the derivative equal to zero. We
might want to approach this problem by taking something along the
lines of a gradient and then do gradient descent.1 This would mean 1 In fact, taking a second-order ap-

proach can be even better, but for the
purposes of these notes we will fo-
cus on first-order methods similar to
gradient descent.

that our cost function looked like:

J =
∫ T

0
`(x, u)dt

and that we were minimizing J with respect to u subject to the con-
straint2 2 What we should minimize with

respect to is a key decision; we could
also minimize with respect to the pair
(x, u) that satisfies the dynamics, or,
possibly, the pair (α, µ) that does not
satisfy the dynamics—we will discuss
this at length in the next lecture. We
could also minimize solely with respect
to u, which is also a common choice.

11

ẋ = f (x, u) x(0) = x0.

(Oftentimes ` will also depend explicitly on time t, but we will only
include that later (e.g., when there is a time-varying reference tra-
jectory); it does not impact the analysis.) To keep track of notation
a bit more easily, we set notation ξ = (x, u) and then differentiate
J(ξ) = J((x, u)) in the direction ζ = (z, v). We then get

DJ(ξ) · ζ =
∫ T

0
D`(ξ) · ζdt,

where the Lagrangian ` is allowed to vary with time (such as if there
is a reference trajectory). Just as in the finite dimensional case, dis-
cussed shortly where the gradient—and thus the descent direction—
is defined by minimizing a quadratic model, we can now potentially
choose a quadratic model and obtain a ζ as a minimizer of a quadratic
model.

For instance, we can simply choose the quadratic model g(ζ) (yes,
ζ, not ξ!) in the following way:

g(ζ) =
∫ T

0
D2`(t, ξ) · ζdt +

1
2

∫ T

0
‖ζ‖2dt

where the norm on the space of ζ (we haven’t really specified what
space that is yet) is something we get to define. For instance, it could
just be the Euclidean 2-norm (where Q = In×n and R = Im×m) or
the weighted Euclidean 2-norm (where Q = QT ≥ 0 and R = RT >

0). The key thing is that we get to choose this quadratic model in
whatever way is most useful for generating the descent direction.

We have not yet discussed what happens to the constraint, but
you can probably imagine that since we are only locally optimizing
the cost function using the quadratic model, the linearization might
be an appropriate way of representing the constraint. In this case,
the quadratic model optimal control problem ends up simply being
a standard optimal control problem! This is the key that makes these
techniques work, because we have a globally optimal method for optimizing
linear quadratic cost functions with linear dynamic constraints.

How can we see that the constraint involves the linearization?
Assume that ξ(t) is such that x(t) and u(t) are related through the
differential equation. That means that x(t) = x0 +

∫ t
0 f (ξ(τ))dτ.

Hence,

ξ(t) =

[
x(t)
u(t)

]
=

[
x0 +

∫ t
0 f (ξ(τ))dτ

u(t)

]
which implies (by taking the derivative of both sides with respect to
ζ)

Dξ(t) · ζ(t) = d
dε

[
x(t) + εz(t)
u(t) + εv(t)

]
ε=0

=
d
dε

[
x0 + εz0 +

∫ t
0 f (ξ(τ) + εζ(τ))dτ

u(t) + εv(t)

]
ε=0

12

which in turn implies

Dξ(t) · ζ(t) =
[

z(t)
v(t)

]
=

 z0 +
∫ t

0

A(τ)︷ ︸︸ ︷
D1 f (x(τ), u(τ)) z(τ)+

B(τ)︷ ︸︸ ︷
D2 f (x(τ), u(τ)) v(τ)︷ ︸︸ ︷

D f (ξ(τ)) · ζ(τ) dτ

v(t)

 .

Note that this implies that z(t) satisfies the differential equation

ż = A(t)z + B(t)v = D1 f (x, u)z + D2 f (x, u)v

such that z(0) = z0.
Note that this derivation only requires that differentiating both

sides of the integral equation x(t) = x0 +
∫ t

0 f (x(τ), u(τ))dτ be
a valid mathematical operation. Clearly one can differentiate both
sides of an equality and still have equality; that is all we are taking
advantage of here.

It is also important to recognize that the optimization is over ζ,
not over ξ. (This hopefully reminds you of gradient descent in finite
dimensions.) Hence, the D`(ξ) is fixed–it is just some time-varying
signal in the optimization problem. How do we optimize with re-
spect to ζ? This turns out to be very similar to gradient descent in
finite dimensions, but one has to interpret gradient descent appropri-
ately.

Gradient Descent in Finite Dimensions

The fact that the above always depends on trajectories (x(t), u(t)),
and is therefore infinite dimensional, often makes it challenging to
have intuition about the optimization and what it means. To get
better intuition, I will draw a (very solid) analogy to the finite dimen-
sional setting of gradient descent.

The method of gradient descent is the algorithm most of us
learned (in an ad-hoc way) to extremize functions. The basic idea
is to find a direction that points “downhill” and then take a step in
that direction. This is formalized in the following algorithm.

13

• Given initial data

• For i = 0, 1, . . .

– Determine a descent direction

zi = −∇ f (xi)

One doesn’t need to make this choice, but zi should be capable of
sufficient decrease.

– Determine a step size (aka step length)

γi = arg min
γ>0

f (xi + γzi)

One does not need to make this particular choice either.

– update
xi+1 = xi + γizi

– Repeat as needed

This algorithm will construct a sequence {xi}∞
i=0 with f (xi+1) <

f (xi) ∀ i. What makes this complicated is illustrated below in the
figure. A descent direction does not need to point directly at the local
minimum. In particular, it will generally point in a direction that
leads to the cost going up for a large enough step size.

x

z

γz

∇f (x)

Figure 7: Left: Level set with descent
direction and step size (from line
search) included. Right: Gradient
shown, perpendicular to level sets.

What questions can we ask about the gradient descent algorithm?
If we employ gradient descent, are we guaranteed to descend? To
converge? To meet necessary conditions of optimility if we do suc-
cessfully converge? These are the fundamental questions that have to
be answered, and it turns out that a relatively simple algorithm has
guarantees on all these questions.

Now, where does gradient descent come from? That is, how does
one obtain zi = −∇ f (xi)? We look at the relationship between the

14

derivative and the gradient to find out. The gradient is defined by the
following relationship.

D f (x) · z = 〈∇ f (x), z〉

Hence, one might want to maximize the amount of change in f one
gets by choosing the right direction z, subject to not using too large of
a z (modeled by a quadratic term).

min
z

D f (x) · z + 1
2
||z||2

We can rewrite this as

min
z
〈∇ f (x), z〉+ 〈z, z〉

and then minimize by taking the derivative with respect to a pertur-
bation w to z (not to x) and setting the result equal to zero.

〈∇ f (x), w〉+ 〈z, w〉 = 〈∇ f (x) + z, w〉 = 0 ∀w

which implies that
z = −∇ f (x).

z0

t

x0
(t0

)

x0
(t

)

x1
(t

)

x0
(tf

)

x1
(tf

)

Figure 8: A trajectory x0(t) and a
perturbation of the trajectory x1(t) =
x0(t) + γz0(t).

The analog to finite dimensional gradient descent uses the descent
direction from the equation shown earlier, and if we can solve for
(z(t), v(t)) by doing that minimization, we can potentially do min-
imization in a way that directly mimics gradient descent in finite
dimensions. That iterative process is illustrated in Fig. 8 for the first
iterate of an iterative scheme.

Armijo line searches
f (x+γz)

f (x) + γ D f(x) · z

Figure 9: The Armijo line search

Let’s go back and consider the map from γ 7→ f (x + γz). We can ap-
proximate this map using different expansions of f (·). In particular,
we can construct local quadratic models for determing the step size if
we wish.

We must ensure that our step or update produces a sufficient
decrease. Let’s suppose that zi is a descent direction for f (·) at xi

(i.e., D f (xi) · z < 0) (e.g., determined by a quadratic model). Suppose
we want to avoid the situation where we converge before we get to an
element of the vector space with zero derivative. This means we want
to not only decrease at each step, we want to decrease enough. This is
what Armijo realized.

The Armijo general sufficient decrease condition is:

f (xi + γzi) ≤ f (xi) + αγD f (xi) · zi (4)

where α ∈ (0, 1) is some algorithmic parameter chosen by the designer.

15

The variable α is simply a constant chosen by the algorithm de-
signer.3 How should we choose γ? Armijo4 says to use a sequence 3 For α a good choice can be α = 0.4.

Others, like Kelley, like α = 10−4.
4 The Armijo step size rule is also
sometimes known as backtracking line
search.

of form γ = βk (k = 0, 1, 2, . . .) until Eq.(4) is satisfied and take the
smallest k that satisfies Eq.(4). Modifications of this basic algorithm
are certainly possible. Also, note that β is just another algorithmic
parameter.5 5 A good choice is β = 0.7.

Formal Properties of Armijo Line Searches

If you apply Armijo line searches, you will only converge to a point
where the directional derivative is equal to zero.

Optimization Using Armijo

Given x0, f (·), D f (·), α ∈ (0, 1
2), β ∈ (0, 1), and maybe ε

While ‖∇ f (xi)‖ > ε

Choose zi by solving zi = arg min D f (xi) ◦ z + 〈z, z〉
n = 0 γ = βn

While f (xi + γzi) > f (xi) + αγD f (xi) ◦ zi

n = n + 1
γ = βn

end while
xi+1 = xi + γzi

end while
Questions the student should be asking include the following.

Does Armijo converge? Can we get an idea of how small a γ may be
required? (Yes, in particular if we obtain zi by minimizing a quadratic
model function and even for general zi.) Does Armijo guarantee that
the algorithm converges to a point that satisfies some condition of
optimality? Before getting to those questions we need to show that a
γ even exists that satisfies Eq.(4) for γ small enough.

For formal results on Armijo line searches, including the fact that
using an Armijo line guarantees convergence to a point that satisfies
D f (x) = 0, see the terrific book Iterative Methods for Optimization by
C.T. Kelley.

Examples

Consider the system

[
ẋ1

ẋ2

]
=

[
cos(x2)

− sin(x1) + cos(u)

]
What or-

dinary differential equation does a perturbation to a particulate
(x(t), u(t)) look like?

A(t) = D1 f (x, u) =

[
0 − sin(x2)

− cos(x1) 0

]
and B(t) = D2 f (x, u) =

[
0

− sin(u)

]

16

As a result, perturbations z(t) must satisfy the differential equation
ż = A(t)z + B(t)v with z(0) = z0, where z0 and v(t) parameterize all
possible perturbations.

17

State Transition, Convolution, and Riccati Equations

State Transition Matrices

Consider the linear time-varying system

ẋ = A(t)x(t) x(t0) = x0.

The state transition matrix for this system is the matrix Φ(t, t0) that
satisfies the matrix-valued differential equation

Φ̇ = A(t)Φ Φ(t0, t0) = Idn×n.

Amazingly,
x(t) = Φ(t, t0)x0

holds for any linear system. In the special case where A(t) = A—the
system is linear time-invariant (LTI)—it turns out that Φ(t, t0) =

eA(t−t0), the matrix exponential of A(t− t0).

Convolution equations

Consider the linear time-varying system

ẋ = A(t)x(t) + B(t)u(t) x(t0) = x0.

This does not have the same linear structure as the previous system,
so the state transition matrix associated with A(t) is not quite enough
to compute the solution. Instead, we get the convolution equation

x(t) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ.

Now, this equation is not quite as complex as it looks. Roughly
speaking, it says that the control is coupled to what the system would
have done based on its initial condition through the integral equation
that weighs the input against the state transition matrix operating
on the input. If A = 0, then we expect to be able to directly control
the state; this is exactly what is predicted because for A = 0 we have
Φ(t, t0) = Idn×n ∀ t.

Using Linear Solutions to Find Descent Directions

Assume we have linear time-varying equations of motion. The dy-
namics are

ẋ = A(t)x + B(t)u x(0) = x0

and
x(τ) = Φ(τ, 0)x0 +

∫ τ

0
Φ(τ, s)B(s)u(s)ds.

18

Let’s assume we have the simplest cost function imaginable–a cost
that is quadratic in x and u:

J(u(·)) = 1
2

∫ T

0
x(t)TQ(t)x(t) + u(t)T R(t)u(t)dt +

1
2

x(T)T P1x(T) (5)

where Q = QT ≥ 0, R = RT > 0, P1 = PT
1 ≥ 0. We now formally dif-

ferentiate J(·) with respect to u(·) (assuming, potentially incorrectly,
that everything is nicely differentiable6). 6 Note that we cannot possibly know

whether or not things are differentiable
because we do not know what space we
are working in.Calculation of Necessary Conditions for Optimality

d
dε

J(u(t) + εv(t))|ε=0

=
∫ T

0
xTQz + uT Rvdt + x(T)T P1z(T)

where z(·) = ∂x(·)
∂u

=
∫ T

0

x(τ)TQ︸ ︷︷ ︸
a(τ)T

[∫ τ

0
Φ(τ, s)B(s)v(s)ds

]
︸ ︷︷ ︸

z(τ)

+ u(τ)T R(τ)︸ ︷︷ ︸
b(τ)T

v(τ)

 dτ + x(T)T P1︸ ︷︷ ︸
pT

1

∫ T

0
Φ(T, s)B(s)v(s)ds

=
∫ T

0
a(τ)T

[∫ τ

0
Φ(τ, s)B(s)v(s)ds

]
dτ + pT

1

∫ T

0
Φ(T, s)B(s)v(s)ds +

∫ T

0
b(τ)Tv(τ)dτ

=
∫ T

0

[∫ τ

0
a(τ)TΦ(τ, s)B(s)v(s)ds

]
dτ + pT

1

∫ T

0
Φ(T, s)B(s)v(s)ds +

∫ T

0
b(τ)Tv(τ)dτ

Now change the order of integration, noting in Fig. 10 the change in
boundary conditions on the integrals.

=
∫ T

0

[∫ T

s
a(τ)TΦ(τ, s)dτ

]
B(s)v(s)ds + pT

1

∫ T

0
Φ(T, s)B(s)v(s)ds +

∫ T

0
b(τ)Tv(τ)dτ

=
∫ T

0

∫ T

s
a(τ)TΦ(τ, s)dτ + pT

1 Φ(T, s)︸ ︷︷ ︸
p(s)T

 B(s)v(s)ds +
∫ T

0
b(τ)Tv(τ)dτ

=
∫ T

0
(p(τ)T B + b(τ)T)v(τ)dτ. s

𝜏 = s𝜏

T

s

𝜏 = s𝜏

T

Figure 10: Changing order of integra-
tion.

Now, p(t) (seen again below) as it is defined doesn’t seem very
easy to compute, but it turns out that it satisfies a nice but some-
what unexpected differential equation. You can think of the integral
expression that defines p(s)T as being the convolution equation, ex-
cept that in this case the state transition matrix Φ(τ, s) operates on a
boundary condition at the final time T instead of the initial time 0.

p(t)T =
∫ T

t
a(τ)TΦ(τ, t)dτ+ pT

1 Φ(T, t) =⇒ p(t) =
∫ T

t
Φ(τ, t)Ta(τ)dτ+Φ(T, t)T p1

19

Moreover, integration is being performed on the first argument of
the state transition matrix Φ(τ, s) instead of the second argument.
(In order to formally get the convolution equation, we would need to
reverse this.7) Nevertheless, as a consequence of this integral defini- 7 Let us use the fact that Φ(t, t0) =

Φ−1(t0, t) to rewrite the equation to
look more like the convolution equa-
tion p(s) =

∫ T
s a(τ)TΦ−1(s, τ)dτ +

pT
1 Φ−1(s, T). This is almost the con-

volution equation for a system with
Φ−1 as the state transition matrix.
However, since p flows backwards in
time from p1 at time T to “final” time
s (treating s like a terminal time), the
integration must also be reversed, pro-
ducing the convolution equation p(s) =
−
∫ s

T a(τ)TΦ−1(s, τ)dτ + pT
1 Φ−1(s, T).

Due to the properties of the state tran-
sition matrix, it turns out that if Φ is
the state transition matrix for LTV sys-
tems with linearization A(t), Φ−1 is
the state transition matrix for a system
with linearization −A(t)—so the con-
volution equation indicates p(s) can be
computed from a linear affine ordinary
differential equation.

tion of p, we find (in the exercises) that p(τ) satisfies the differential
equation

ṗ = −AT p−Qx p(T) = p1

and we get

DJ(u) · v =
d
dε

J(u(t) + εv(t))|ε=0 =
∫ T

0
[p(τ)T B + b(τ)T]v(t)dt

so, to be optimal, u(·) must satisfy the equation

[p(t)T B + u(t)T R] = 0

or, more conveniently,

BT p(t) + Ru(t) = 0 (6)

which implies
u = −R−1BT p(t).

Note that if we write down the three conditions for optimality to-
gether, we get

ẋ = Ax + Bu

ṗ = −AT p−Qx

0 = BT p(t) + Ru(t).

This is the differential statement of the famous Maximum Principle,
which we will discuss more later. It will turn out that there is a nat-
ural way to obtain these equations from an appropriately defined
Hamiltonian; this will be very helpful to us later when we want to
solve some LQR problems that have off-diagonal terms.

Rewriting the above equations by substituting in the value of u, we
get

ẋ = Ax− BR−1BT p(t)

ṗ = −AT p−Qx

0 = BT p(t) + Ru(t).

which, in matrix form, looks like[
ẋ
ṗ

]
=

[
A −BR−1BT

−Q −AT

] [
x
p

] [
x(0)
p(T)

]
=

[
x0

p1

]
(7)

20

Note this does not have the same boundary condition structure that
we are used to (e.g., initial value problems) because it has an initial
condition in x and a final condition in p. This is called a two-point
boundary value problem (TPBVP). You can just solve this in MAT-
LAB, but we are going to opt to be more clever than that.

The first-order optimality condition is equivalent to the solvability
of (7). The question is whether or not we can solve this TPBVP? It
turns out that something magical happens here; in particular, it is
true that p(t) = P(t)x(t) for some choice of P(t) (at least near t = T).

Riccati Equations

Now, what differential equation does P(t) satisfy, assuming it exists
at all? We want to know because we would like to be working with
lower-dimensional, better-conditioned systems if possible. We want
P(·) so that p(t) = P(t)x(t) for t < T (hopefully t ∈ [0, T], but we will
see in the next section that we can’t necessarily guarantee that). What
do we do? What we always do: Differentiate!

p = Px

⇒ ṗ = Ṗx + Pẋ

= Ṗx + P(Ax− BR−1BT Px)

and ṗ = −Qx− AT Px

⇒ 0 = (Ṗ + PA + AT P− PBR−1BT P + Q)x

This equation has to hold for all possible trajectories x(·), so the
matrix-valued differential equation

Ṗ + PA + AT P− PBR−1BT P + Q = 0 P(T) = P1

must hold. This is a Riccati equation. This Riccati Equation is a quadratic
equation in P that runs backward in time. Since it is smooth, the
soution will exist and be unique from T down to some t∗ < T which
implies that P(t) on (t∗, T] is well defined. We hope that t∗ < t0.

Exercises

Given a two dimensional linear system (e.g.,

[
ẋ
ẏ

]
=

[
0 1
−1 −1

] [
x
y

]
+[

0
1

]
u) and a quadratic objective function (e.g., J =

∫ 1
0

1
2 xTx +

u2dt + 10x(T)Tx(T)), find the Riccati solution for the optimal control
and numerically convince yourself that it is the optimizer. (Think
about how to do this using tools we have discussed in class.)

21

Iterative Optimization, Maximum Principle, and Two Point Bound-
ary Value Problems

The Maximum Principle

We have just shown a very, very limited version of what is called the
Pontryagin Maximum Principle. We know that for the LQ problem

J =
∫ T

0

1
2

xTQx +
1
2

uT Rudt +
1
2

x(T)T P1x(T)

such that

ẋ = A(t)x + B(t)u x(0) = x0,

we get

ẋ = A(t)x + B(t)u x(0) = x0

ṗ = −A(t)T p−Q(t)x p(T) = p1

0 = B(t)T p(t) + R(t)u.

A notational restatement of this can be achieved by using the
Hamiltonian formalism. Define

H = `+ pT f

where ` = 1
2 xTQx + 1

2 uT Ru, p is the adjoint variable, and f =

A(t)x + B(t)u. Then these equations are equivalent to Hamilton’s
equations

ẋ = Dp HT

ṗ = −Dx HT

0 = DuHT

(We will also sometimes use the notation DpH = Hp, −Dx H = −Hx,
and Du H = Hu.) For the case of the LQ problem, we have already
shown that these equations provide the optimal control as a Two
Point Boundary Value Problem. What is amazing is that these equa-
tions hold for any nonlinear system and for any objective function!
This result, called the Pontryagin Maximum Principle, can be stated as
the following.

Theorem 1. Given J =
∫ T

0 `(t, x(t), u(t))dt + m(x(T)) and f sufficiently
differentiable, and H = `+ pT f , the optimal control u satisfies the following
relation.

ẋ = f (t, x(t), u(t)) x(0) = x0

ṗ = − fx(t, x(t), u(t))T p− `x(t, x(t), u(t)) p(T) = p1 = mx(T)

0 = fu(t, x(t), u(t))T p(t) + `u(t, x(t), u(t)).

22

We will use this fact many times in later sections.

Back to iterative optimization

This is basically the same thing that we did in the last section! That
is, minimizing this linear quadratic problem is very similar to opti-
mizing when there is a reference signal in the Lagrangian `. To see
this, define

(a(t)T , b(t)T) = D`(ξ).

Now, the Hamiltonian for the system with ζ as the optimization
variable is

H = aTz + bTv︸ ︷︷ ︸
D`(ξ)·ζ

+
1
2
(zTQz + vT Rv) + pT(Az + Bv)︸ ︷︷ ︸

||ζ||2

(where Q and R are whatever we have chosen for the quadratic
model) so that the optimality conditions become

ż = HT
p = Az + Bv

ṗ = −HT
z = −a−Qz− AT p

0 = HT
v = b + Rv + BT p

so that v = −R−1(BT p + b). The key here is that the a and b terms
both typically depend on the error between the actual trajectory and
the desired trajectory, so those terms will be responsible for locally
driving the system cost down.

Assume that p = Pz+ r just like the last section. Taking derivatives
with respect to time, we find that

p = Pz + r

ṗ = Ṗz + Pż + ṙ

−a−Qz− AT p = Ṗz + PAz + PBv + ṙ

−a−Qz− AT Pz− ATr = Ṗz + PAz + PBv + ṙ

−a−Qz− AT Pz− ATr = Ṗz + PAz + PB(−R−1(BT p + b)) + ṙ

−a−Qz− AT Pz− ATr = Ṗz + PAz− PBR−1BT p− PBR−1b + ṙ

−a−Qz− AT Pz− ATr = Ṗz + PAz− PBR−1BT Pz− PBR−1BTr− PBR−1b + ṙ

0 = (Ṗ + PA + AT P− PBR−1BT P + Q)z + (ṙ + ATr− PBR−1BTr + a− PBR−1b)

0 = (Ṗ + PA + AT P− PBR−1BT P + Q)z + (ṙ + (A− BR−1BT P)Tr + a− PBR−1b).

So we have two differential equations to solve:

0 = Ṗ + PA + AT P− PBR−1BT P + Q

0 = ṙ + (A− BR−1BT P)Tr + a− PBR−1b.

23

These are subject to terminal boundary conditions, of course.
Remember, that we know what p(T) is, and given z0 we know what
z(T) is. As a consequence, we know what P(T) and r(T) must be as
well.

We will obtain the descent direction defined by these equations by
solving differential equations. What is the descent direction? It is
ζ = (z, v) satisfying

ż = Az + Bv

v = −R−1BT Pz− R−1BTr− R−1b

where we have not yet defined what the initial condition of z should
be. There are two “natural” choices of initial condition. One is that
z(0) = 0, so that the perturbation at time zero is zero, making it
easier to regulate at time t = 0. The other possibility is to choose an
optimal z(0)—to minimize the objective with respect to z0.

min
z0

g(ζ) = min
z0

∫ T

0
D2`(t, ξ) · ζ + 1

2
‖ζ‖2dt

The solution to this problem is z(0) = −P−1(0)r(0), but this isn’t
easy to show. The standard method involves computing the “cost
to go” function; we will discuss this in the final section of these
notes—the derivation of this extraordinarily compact result is quite
involved—but for now all you really need to know is that z(0) =

−P−1(0)r(0) is a good choice in your code.

The iLQR algorithm

To recap, last lecture we derived an optimal controller for a linear
time-varying system. It was shown that a backwards propagating
Riccati equation could be solved to obtain a optimal controller with
respect to any quadratic cost:

Given the cost

J(u(·)) = 1
2

∫ T

0
x(t)TQ(t)x(t) + u(t)TR(t)u(t) dt +

1
2

x(T)TP1x(T),

the optimal system behavior is given as

ẋ(t) = (A(t)− B(t)K(t))x(t), x(t0) = x0,

−Ṗ(t) = P(t)A(t) + A(t)TP(t)− P(t)B(t)R(t)−1B(t)TP(t) + Q(t), P(T) = P1,

K(t) = R(t)−1B(t)TP(t).

Then, in this lecture, the methodology was extended to the case
when the system is governed by nonlinear dynamics. However, in-
stead of deriving a globally optimal controller the optimal descent
direction was obtained. That is, we found the best way to change

24

the current trajectory, ξ = (x, u), to obtain a more optimal one. The
descent direction, ζ = (z, v) , is computed as:

Given the cost and nonlinear dynamics

J(u(·)) =
∫ T

0
l(t, (x, u)) dt and ẋ(t) = f (x, u),

the descent direction, ζ = (z, v) , is computed as

ż(t) = A(t)z(t) + B(t)v(t), x(t0) = x0,

v(t) = −R(t)−1B(t)TP(t)z(t)− R(t)−1BT(t)r(t)− R(t)−1b(t),

−Ṗ(t) = P(t)A(t) + A(t)TP(t)− P(t)B(t)R(t)−1B(t)TP(t) + Q(t),

−ṙ(t) = (A− BR−1BTP)Tr + a− PBR−1b.

where (a(t)T, b(t)T) = D2l(t, ξ), A(t) = D1 f (x, u), and B(t) =

D2 f (x, u).
A gradient descent algorithm can now be created based on this

result.
Algorithm 1: Iterative Linear Quadratic
ControlData:

ξ0 = (x0, u0) Initial Trajectory (Initial Guess)
J(ξ0) Considered Cost
α = (0, 1

2), β = (0, 1), and ε (a small number)
i = 0

while ||ζ|| > ε do
compute descent direction, ζi = (zi, vi)

3: ζi = arg min
ζ

DJ(ξi) ◦ ζ + 1
2 ||ζ||2

compute line search using descent direction ζi

n = 0

6: while J(ξ+i) > J(ξi) + αγDJ(ξi) ◦ ζi do
u+

i = ui + γvi

x+i = x(t0) +
∫ T

0 f (t, (x+i , u+
i)) dt

9: ξ+i = (x+i , u+
i)

n = n + 1
γ = βN

12: end while
ξi+1 = ξ+i
i = i + 1

15: end while

The algorithm is iterative since it successively updates the trajec-
tory based on the computed descent direction. Note that the updated
state trajectory, x+i , is not computed directly from the state descent
direction, zi. Instead, only the control signal is directly updated.
Therefore, it cannot be assumed that the new state trajectory follows

25

the computed descent direction (x+i 6= xi + γzi). Indeed, ξ+i = ξi + γζ

may not even be a dynamically feasible trajectory. In the next couple
of lectures projection operators are introduced to address this issue.

Solving Optimal Control Problems Using Two Point Boundary Value Prob-
lems

From the Maximum Principle, we can also obtain a numerics-based
approach to solving an optimal control problem. That is, we can just
try to solve the two point boundary value problem directly (e.g.,
MATLAB, Mathematica, python have built-in solvers). If the solver
returns an answer, you have your solution!

Exercises

Show numerically that the solution to the Riccati equation (obtained
by solving the matrix-valued ordinary differential equation) and the
solution to the Two Point Boundary Value Problem (obtained using
an appropriate numerical solver) are nearly, but not exactly, the same.
Use the example from last lecture as the example.

Use the Armijo line search for a single iterate of iLQR.
Apply iLQR to the vehicle example, using a semi-circle as an ini-

tial trajectory and an infeasible straight line corresponding to parallel
parking as a reference trajectory.

26

Probability

Much of this section—and the following sections on filtering—is
modeled after the book Probabilistic Robotics by Thrun, Burgard, and
Fox (2005). The goal here is to provide a brief introduction into rea-
soning about robots from the perspective of probabilities and, in my
opinion more importantly, distributions and their role in capturing
concrete uncertainties faced by robots. The first part of this section
will introduce the definitions we need. The second part will try to
connect these definitions to concrete problems in robotics and to give
students a sense of what types of uncertainties we are good at deal-
ing with and what types of uncertaintes we are not good at dealing
with.

Basic Definitions

The most basic idea in probability is that of a random variable X ,
which can take on particular values x. Often these values are part of
the state of a robot (e.g., x ∈ Rn), but they are just as often discrete
outcomes (like the outcome of flipping a coin). As a result, we will
need both discrete and continuous random variables. That is, either

x ∈ {x1, x2, ..., xn} or x ∈ S ⊂ Rn.

The random variables take on values with a particular probability
p(X = x) (typically using notation p(x) unless there is the potential
for confusion). These probabilities must satisfy the following require-
ments.

∑
x

p(X = x) = 1

p(X = x) ≥ 0 ∀x

for discrete random variables and∫
x

p(X = x) = 1

p(X = x) ≥ 0 ∀x

for random variables.

Normal Distributions

The most common distribution we will encounter will be the normal
distribution, sometimes called the Gaussian distribution, parameter-

27

ized by the mean µ and the variance σ2.

p(x) =
1

(2πσ2)
1
2

e
−(x−µ)2

2σ2 = (2πσ2)
−1
2 exp

(
−(x− µ)2

2σ2

)
= N (x; µ, σ2)

In multidimensional cases, where x is a vector (and therefore µ is a
vector µ ∈ Rn and the variance Σ is a matrix Σ ∈ Rn×n), the following
generalization of this formula is used.

p(x) = det(2πΣ)
−1
2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
= N (x; µ, Σ)

Joint Distributions, Conditional Probabilities, and Bayes Theorem/Rule

The joint distribution models how likely two events are when mea-
sured as single combined event. For instance, what is the likelihood
of flipping two coins and both coming up heads? These are inde-
pendent of each other. But what about the joint probability of a bad
student (as measured through a survey of all the student’s prior
teachers) getting a good grade (as measured using a particular as-
signment)? These are clearly not independent notions.

The joint distribution of p(X = x) and p(Y = y) is

p(x, y) = p(X = x and Y = y).

Two events are considered independent if

p(x, y) = p(x)p(y).

The joint distribution is essentially the intersection of the two distri-
butions. One can, of course, look at the union of the two distributions

p(X = x or Y = y) = p(x) + p(y)− p(x, y).

Another important idea is that of the conditional probability, when
two events are not independent of each other.

p(x|y) = p(X = x|Y = y) =
p(x, y)
p(y)

.

Note this implies that p(y) 6= 0. When X and Y are independent,
p(x|y) = p(x).

Lastly, there is what is called the Theorem of Total Probability, which
states the following (somewhat obvious but nevertheless important)
fact.

p(x) = ∑
y

p(x|y)p(y) or
∫

p(x|y)p(y)dy

Bayes Rule is both important and obvious. By the definition of
conditional probability, we know that

p(x|y)p(y) = p(x, y)

p(y|x)p(x) = p(x, y)

28

so that
p(x|y)p(y) = p(y|x)p(x)

This last line, rearranged by dividing one side by p(y) leads to Bayes
Rule:

p(x|y) = p(y|x)p(x)
p(y)

.

In many textbooks, η = 1
p(y) is called a normalization factor for ease of

notation. One of the shocking things about Bayes Rule is how bad we
are at applying it and having intuition about it, as the next example
illustrates.

Bayes Rule Example

This is a famous example due to Yudkowsky. Imagine you have a
population U susceptible to cancer C and a test T for cancer. Given a
positive test T = 1 for cancer, how concerned should an individual be
that s/he has cancer (i.e., that C = 1)? To answer this, we need some
information about cancer rates and test efficacy. Suppose for the age
range considered, we know that

p(T = 1|C = 1) = 0.75

p(T = 1|C = 0) = 0.10

p(C = 1) = 0.01.

That is, the test capture correct positives three quarters of the time,
has false positives one tenth of the time, and there is a baseline rate
of one in one hundred people this age with cancer. Now, for a par-
ticular individual who receives a positive test of T = 1, what is that
likelihood that C = 1?

We want to calculate this using Bayes Rule, so we need P(T),
which is given by the total probability

p(T = 1) = p(T = 1|C = 1)p(C = 1)+ p(T = 1|C = 0)p(C = 0) = 0.75× 0.01+ 0.1× 0.99 = 0.1065.

Then we calculate P(C = 1|T = 1) using Bayes Rule.

p(C = 1|T = 1) =
p(T = 1|C = 1)p(C = 1)

p(T = 1)
=

0.75× 0.01
0.1065

≈ 7%.

Hopefully this gives you a sense of how unintuitive correct interpre-
tation of probabilities can be.

A visualization of this is shown below.

Expectation and Entropy

The expectation of a random variable is its average/mean value
weighted by the probabilities of each variable.

E[X] = ∑
x

xp(x) or
∫

xp(x)dx

29

Note that expectations satisfy linearity with respect to addition. The
covariance is the expected deviation from the expectation/mean.

Cov[X] = E
[
[[X − E[X]]2

]
= E

[
X 2 −X E[X]− E[X]X + E[X]2

]
= E[X 2]− E[X]2

Lastly, entropy h(x) is an attempt to quantify the information con-
tained in a signal about a distribution, based on the following two
axiomatic starting points.

1. First, that the information should add if two random variables are
independent

h(x, y) = h(x) + h(y) whenp(x, y) = p(x)p(y)

2. Second, that p(x, y) = p(x)p(y) implies that the log of p(x, y)
must be taken in order to get the additive property.

These requirements, really just observations, lead to the definition
h(x) = − log(p(x)), where using base 2 corresponds to the notion
of the number of bits. To find the average amount of information
required to describe a distribution, we take the expectation.

H(x) = E(h(x)) = ∑
x

p(x)h(x) = ∑
x
−p(x) log(p(x))

Uncertainty as a Result of Noise versus Uncertainty as a Result of Struc-
ture

Uncertainty in robotics comes from two primary sources, noise and
knowledge. The more familiar example is noise, where we might

U

T

U

C

C T

U

Figure 11: A visual representation of
the probabilities of a population U
being susceptible to cancer C and a test
T for cancer. A positive test T = 1 does
not always correspond to having cancer
C = 1.

30

expect a range sensor to be able to detect the distance to the nearest
object at which it points.

r

t

r0

r
r0

(a) (c)(b)

x
r

P(r) Figure 12: (a) The location x of a robot
with a range sensor that detects a wall
at a distance r. (b) Noisy measurements
from the range sensor. (c) A numerical
approximation showing the likelihood
that the wall is actually distance r0
away from x.

This range sensor will, of course, not give a static, perfect and
perfectly constant signal. Instead, it will be close to the correct value,
but with a contribution of uncertainty—often modeled as noise.

r(t) = rtrue(t) + noiseterms = rtrue(t) + dw (dw ∈ N (x; µ, σ2))

Another type of uncertainty, and one that is often more important
in robotics, is that of structure uncertainty, possibly arising from the
world and our knowledge of the world. For instance, imagine that
a robot has a door sensor. (This might be a camera that rotates on
top of a robot combined with a perception capability for detecting
doors.) Let’s say that a door can only be sensed if the robot is not
overly oblique—a 45 degree angle is required relative to the side of
the door in order to detect it. Then detecting a door implies that one
is somewhere in a map defined by the sensor characteristics, as shown
below.

probability
zero

uniform
probability

nonzero
Figure 13: Left: An environment with
doors and hallways. Right: The shaded
regions indicate where a door can be
detected using the measurement model
described above.

Exercises and Questions

1. How does noise impact the map from the door function? (roughly,
white→ light grey, and black→ dark grey)

2. What other variables could impact the probabilities? (e.g., angle
of incidence uncertainty, obstruction/occlusion, role of orientation,
speed of motion, distance-to-door)

31

3. How should one choose to move once in a region where there is a
detected door?

4. How will the estimate of state evolve as a function of motion?

5. How would you describe the difference between uncertainty due
to structure versus uncertainty due to noise, specifically in terms
of entropy? (Imagine you are comparing GPS (possibly with lots of
error) to the door sensor.)

32

Beliefs and Particle Filters

In this section we will always assume that our prior state and current
control are sufficient to estimate the current state. That is,

p(xt|x0:t−1, z0:t−1, u0:t) = p(xt|xt−1, ut).

where xt is the state, zt is the measurement, and ut is the control.
Moreover, we will similarly assume that the measurement only de-
pends on the current state:

p(zt|x0:t, z0:t−1, u0:t) = p(zt|xt).

Transition Models

Probabilities transition from one time to another. We think of this as
a dependence of xt on the input and the prior state, leading to an
observation.

x ti-1 x ti x ti+1

z ti+1
z tiz ti-1

u ti-1 u ti u ti+1
Figure 14: Controls uti−1 affect states xti
which affect measurements zti .

These models will typically come from differential equations like

ẋ = f (x, u) + noise

or
ẋ = f (x, u + noise).

(Think about what the difference is between these two situations!)
If a system is linear, then the transition function will be the state

transition matrix we talked about earlier in class. That is:

Xti+1 = Φ(ti, ti+1)Xti

where Φ satisfies the ordinary differential equation for the state tran-
sition matrix. If the ordinary differential equation is nonlinear, then
one needs to discretize f (x, u) over the time step. For example, one
could use Euler integration

xti+1 = xti+1 + dt f (xti+1 , uti+1)

or a Runge-Kutta scheme.

33

Moreover, typically there will be uncertainty as mentioned above,
and that uncertainty might enter the ordinary differential equation
in terms of a completely separate vector field. Figuring out how to
incorporate uncertainty systematically, even for additive noise mod-
els, can be very challenging for nonlinear systems because noise may
make a system violate nonlinear constraints (e.g., a vehicle slipping
sideways).

Example:
ẋ = u x ∈ R2 u1 = 1 u2 = 1

The figure below shows the resulting state transition. The expected
state changes if ẋ = u + noise. How would one need to renormalize
the result?

p (xt

)

p (xt

)

p (xt-1

)

x = f (x, u)

x = f (x, u + noise)

Figure 15: Left: The probability distri-
bution at time t− 1. We believe that x
is somewhere in this region. Right: The
belief at time t. We know the dynamics,
so we predict that x has moved up and
to the right, but the distribution be-
comes wider and more diffuse if there
is noise in the control signal. The next
step is to normalize the new belief.

Example: What if the dynamics are of the form

ẋ =

[
0 1
0 0

]
x +

[
0
1

]
u

or

ẋ =

[
−1 0
0 −1

]
x +

[
1 0
0 1

]
u?

How would the evolution of distributions change?

Measurement Models

For any given sensor, a measurement model tells us how likely a given
state is to have generated that measurement. We denote such a prob-
ability by p(zt|xt). For instance, for the door sensor we have men-
tioned (assuming it needs to see both sides of the door), we get some-
thing like that shown below.

34

W

Figure 16: A measurement model for
the door sensor. If the robot needs to
see both sides of the door to detect it, it
will observe a door only when it is in
the region W.

If the area of the shaded region is W, then the measurement model
p(zt = 1|xt) is

p(zt = 1|xt) =

{
1 if xt ∈W
0 else

while its inverse is the following.

p(xt|zt = 1) =

{
1

area(W)
if xt ∈W

0 else

How would this model change if the door sensor were unreliable?
That is, within the shaded region W the door sensor only correctly
detects a door 80% of the time and outside of the region W it incor-
rectly detects a door 20% of the time?

Belief

To distinguish between distributions at different times t, we use the
notion of a belief at time t to facilitate updating distributions.

bel(xt) = p(xt|z0:t, u0:t)

and

bel(xt) = p(xt|z0:t−1, u0:t)

The second belief function acts as an intermediate step that predicts
the belief based on a prior belief.

Bayes Filter

The general form of a Bayes filter has a prediction step and a reweight-
ing step based on a measurement. Remember that the measurement
is a single vector, not itself a distribution, but as soon as the mea-
surement is known we can talk about how likely any given state is to
have generated that measurement.

35

bel (x t-1) bel (x t)

 x = u

u = [0
-1

[Figure 17: Left: The belief at time t− 1.
Right: The ”belief bar" predicts the
belief at time t based on the the belief at
time t− 1 and the control input, but not
the measurement.

The first step in a Bayes filter is to update the belief with a predic-
tion that generates a belief for all possible xt:

bel(xt) =
∫

p(xt|ut, xt−1)bel(xt−1)dxt−1 ∀xt.

Note that this is a total probability calculation for each state xt.
The second step in a Bayes filter is to update the belief with the

measurement:
bel(xt) = ηp(zt|xt)bel(xt) ∀xt.

This is a conditional probability, conditioned on zt. (Note that η

is a normalization constant to keep the belief integrating to 1.) A
geometric example of a belief update in both stages is below.

bel (x t) z t bel (x t)

Figure 18: The bel(xt) based on the
previous belief bel(xt−1) and the control
input ut and the measurement zt are
combined to result in a new distribu-
tion bel(xt).

Note that at the end the area of the distribution will not be the
same as the area of either shaded region, so normalization is re-
quired, even in the case where probabilities are being generated
purely from geometry-based reasoning.

Nonparametric Filtering: Particle Filters

Particle Filters are a way of using samples from a distribution to
model the impact of nontrivial/nonlinear transition functions (typ-
ically arising from physics or some other principled modeling ap-
proach).

We start with a set of M samples.

Xt = x[1]t , x[2]t , x[3]t , ..., x[M]
t

36

These samples are sampling proportional to the distribution itself, as
illustrated below (where the dashes are each sample, and are more
dense in high probability regions). These samples are then mapped
through some potentially nonlinear mapping g(x) to obtain a sam-
pling of a new distribution. This new distribution exists, but will
generally never be known exactly; instead, it will be represented by
the particles themselves.

p (xt-1
) p (xt

)g (x) Figure 19: Particles (represented by
small vertical lines) sampled from the
distribution p(xt−1) are transformed
through mapping g(x) to obtain a
sampling of new distribution p(xt).

The steps of a particle filter follow the requirements of a Bayes Fil-
ter, using a prediction step and measurement step at each time. Note

Particle Filter Algorithm
Xt = {}
X t = {}

1: for m = 1, ..., M do
2: sample x[m]

t from p(xt|ut, x[m]
t−1)

3: w[m]
t = p(zt|x[m]

t)

4: add the pair (x[m]
t , w[m]

t) to X t

5: end for
6: for m = 1, ..., M do
7: draw i with probability w[m]

t

8: add x[i]t to Xt

9: end for

Return Xt

that normalization is implicit because of the resampling procedure.
An example of what this might look like is below.

Some notes on implementation are warranted here. First, the pre-
diction step is executed in a couple of ways. What you are formally
supposed to do is predict the distribution at time t assuming xt as
an initial condition, and then sample from the resulting distribution.
This, of course, would be computationally prohibitive. Instead, we
predict (typically using a differential equation) and include noise
either by a) adding noise to the result and using the outcome as xt,
or b) adding noise to the control u and using the resulting state as
xt. (What we do not do, even if it would be more rigorous in many
cases, is simulate many random executions from xt−1 to generate a
full distribution at t and then sample from the result.)

37

u = [1
-1

[

bel (x t-1) bel (x t)

p (z t

|xt

) resampling of X t

z(t)

Figure 20: We start with the belief at
time t− 1, then predict bel(xt) using the
dynamics ẋ = u and some amount of
noise. Next we use our measurement
zt to calculate weights for the particles,
and then resample from the weighted
distribution.

Second, the resampling phase in line 7 is important, and hope-
fully intuitively makes sense. However, implementing it is not typi-
cally immediately obvious. To implement it, you can normalize the
weights so that they all add up to one:

w̃[m]
t =

w[m]
t

∑i w[i]
t

and then randomly sample a number rand[i] from the uniform distri-
bution on [0, 1]. Then we find the i for which ∑i

j=1 ≤ rand[i] < ∑i+1
j=1

and add x[m]
t to Xt.

38

Active Learning

Now we have our first opportunity to think about active learning
strategies, where actions will have consequence for knowledge. For
instance, in the image below, given the geometry of the environment
and the distribution of particles, how should I choose u if ẋ = u to
best know xt if all I have is a contact sensor?
Question: How would you generate a cost function that, through
minimization as a function of u, achieves the desired result?

39

Kalman Filters

Our goal is to find a combination of two distributions of known
covariance and combine them to minimize the covariance of the state
estimate. We will approach this through one of several Kalman filter
derivation strategies; ours focuses on the Kalman filter as the optimal
linear filter (not necessarily focusing on normal distributions, though
you can think of it in those terms if you like). As a result, we will use
optimization to derive the filter.

Set up

We will make several assumptions. First, we assume a linear, discrete-
time system.

ẋ = Ax + Bu

so that we have an associated discrete-time linear system.

xk = Akxk−1 + Bkuk + wk

zk = Ckxk + vk

The output is zk and is impacted by measurement noise vk of covari-
ance Rk, which is uncorrelated from the state. The process noise wk

in the dynamics has covariance Qk, also uncorrelated from the state.
The input uk is assumed known. The estimate of xk will be denoted
x̂k.

Prediction Step

Define

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
T]

which is the covariance of the prediction step of the state error. Im-
portantly, assume that the estimate dynamics are the same as the true
dynamics (here we assume that the noise wk is not correllated with
the dynamics), so that

x̂k|k−1 = Ak x̂k−1|k−1 + Bkuk.

This implies that

xk − x̂k|k−1 = Ak(xk − x̂k−1|k−1) + wk.

40

If we evaluate Pk|k−1, we get

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
T]

= E[(Ak(xk − x̂k−1|k−1) + wk)(Ak(xk − x̂k−1|k−1) + wk)
T]

= E[(Ak(xk − x̂k−1|k−1))(Ak(xk − x̂k−1|k−1))
T] + E[wk(Ak(xk − x̂k−1|k−1))

T]

+ E[(Ak(xk − x̂k−1|k−1))w
T
k] + E[wkwT

k]

= E[(Ak(xk − x̂k−1|k−1))(Ak(xk − x̂k−1|k−1))
T] + E[wkwT

k]

because the noise is uncorrelated from the state

= AkE[(xk−1 − x̂k−1|k−1)(xk−1 − x̂k−1|k−1))
T]AT

k + E[wkwT
k]

= AkPk−1|k−1 AT
k + Qk.

So, as a result we have a prediction step of the following form.

Pk|k−1 = AkPk−1|k−1 AT
k + Qk

Measurement Update

Now let us consider the measurement update. We will assume that
the state update is a linear combination of the prediction update
xk|k−1 and the measurement zk. That is, we assume it is of the follow-
ing form.

x̂k|k = x̂k|k−1 + Kk(zk − Ck x̂k|k−1)

Here we will take the derivative of a real-valued function of Pk|k with
respect to Kk and set it equal to zero to find the optimum choice of
Kk.

First, look at Pk|k.

Pk|k = E[(xk − x̂k|k)(xk − x̂k|k)
T]

= E[(xk − (x̂k|k−1 + Kk(zk − Ck x̂k|k−1)))(xk − (x̂k|k−1 + Kk(zk − Ck x̂k|k−1)))
T]

= E[((xk − x̂k|k−1)− Kk((Ckxk + vk︸ ︷︷ ︸
zk

)− Ck x̂k|k−1))((xk − x̂k|k−1)− Kk((Ckxk + vk︸ ︷︷ ︸
zk

)− Ck x̂k|k−1))
T]

= E[((xk − x̂k|k−1)− Kk(Ck(xk − x̂k|k−1) + vk))((xk − x̂k|k−1)− Kk(Ck(xk − x̂k|k−1) + vk))
T]

= Pk|k−1 − KkCkPk|k−1 − Pk|k−1CT
k KT

k + Kk(CkPk|k−1CT
k + Rk)KT

k .

(Note that the vk drop out because they are uncorrelated to the state.)
This is where the big idea in Kalman 1960 is. Kalman realized that

the manifold of all possible measurements is a linear manifold, gen-
erated through convolution of the random signal and the dynamics.
As a result, a major theorem from Hilbert implies that the optimal
solution must be a linear projection. So, although we are choosing to
only consider linear filters, Kalman showed that in a relatively broad
set of situations linear filters are in fact the only filters that need to be
considered.

41

Now we optimize something with respect to Kk. It turns out that
the trace of Pk|k is a good choice because a) it is equal to the sum of
the errors squared in the state and b) because it leads to nice state-
ments of the derivative. One could, of course, use other measures
(e.g., the determinant of Pk|k), but those do not lead to nice deriva-
tives.

The trace tr(A) has two properties we will need:

∂

∂X
tr(XA) = AT

∂

∂X
tr(XAXT) = 2XA

Both of these can be confirmed by direct calculation.
Now we take the derivative and set it equal to zero.

∂

∂Kk
Pk|k =

∂

∂X
tr
(

Pk|k−1 − KkCkPk|k−1 − Pk|k−1CT
k KT

k + Kk(CkPk|k−1CT
k + Rk)KT

k

)
=

∂

∂X

(
tr(Pk|k−1)− tr(KkCkPk|k−1)− tr(Pk|k−1CT

k KT
k) + tr(Kk(CkPk|k−1CT

k + Rk)KT
k)
)

= −2(CkPk|k−1)
T + 2Kk(CkPk|k−1CT

k + Rk) = 0

=⇒ Kk = Pk|k−1CT
k [CkPk|k−1CT

k + Rk]
−1

=⇒ Pk|k = Pk|k−1 − KkCkPk|k−1

Notion of Optimality

What does “the optimal linear filter” mean in this setting? It should
mean that if you look at nearby linear filters, Kk is better than all of
them in some way. Specifically, if you do Monte Carlo simulations of
the process and measurement noise, you should see that across all
of them the optimal choice of Kk leads to the best performance on
average.

Brief note on Kalman Smoothers

We have made a big point about state statistics being sufficient. But
is it possible to generate a linear filter that is better than Kalman
filter? The answer is yes, but only if we take advantage of measure-
ment data in the future to update estimates in the past. This is called
smoothing, rather than filtering, and leads to even better estimates.

42

Entropy

Recall that the goal of information is fourfold:

1. the information about something should increase monotonically
as measurement are obtained

2. I(p) ≥ 0

3. I(1) = 0

4. Independent events (I(p1 p2) = I(p1) + I(p2)) should have
information that sums.

Shannon was interested in how many questions of a yes/no type will
resolve the state on average. He noticed that log functions meet all
these requirements of information, and that in fact they are the only
functions that do so. This leads to the expressions:

h = log(
1

p(x)
) = − log p(x) H = ∑

i
−p(xi) log p(xi)

where H is the entropy measuring information. In base 2, H is mea-
sured in bits.

Coin flip example: (H = heads, T = tails.) Given a fair coin,
p(H) = p(T) = 0.5. leads to H = 2 bits, as expected. However, given
an unfair coin p(H) = 0.899972, we get H = 1 bit; that is, there is
only one bit of information, on average, in every two coin flips.

As a consquence, the number of bits suggests that we should be
able to ask better questions. For instance, in two coin flips, we have
the option of asking the query HH, which has roughly an 80% like-
lihood of being true (thus terminating our need to ask questions). If
the answer is no, then we could HT, then followed by the question
TH if needed. On average, this leads to a scheme that requires 1.3
questions per two coin flips. Shannon’s 1 bit entropy is a bound, and
as the number of flips goes up our ability to approximate the bound
will become better.

Differential Entropy

Entropy can be generalized to continuous variables using

H = −
∫

X
p(x) log(p(x))dx

which seems like a perfectly reasonable generalization. However, if
one approximates this integral with a summation, investigation of the
summation shows that the log(0) shows up, making the differential
entropy appear to be infinite. Moreover, this definition can lead to
negative entropy.

Example entropy for several distributions:

43

1. Normal distribution: log(σ
√

2πe)

2. Uniform distribution f = 1
b−a has an entropy: log(b− a)

3. Multivariate Normal distribution: log((2πe)N det(Σ))

Relative Entropy

The relative entropy fixes many of the problems with differential en-
tropy by comparing information in two distributions. It is defined as
the following.

h(P||Q) = log
(

P
Q

)
H = −∑

i
P(xi) log

(
P(xi)

Q(xi)

)
This definition indicates how well P captures information in Q. (See
link about space worms.) The relative entropy also generalizes to
continuous variables well.

H = −
∫

X
P(x) log

(
P(x)
Q(x)

)
dx

44

Maximum Likelihood & Fisher Information

Reminder: Let X be a random variable and Y = g(X). Then Y is
also a random variable since for a particular outcome X = x, Y =

g(X = x). Derivatives of Y are also random variables, so we can
evaluate expectations and variances of a number of functions of
random variables. 0.2 0.4 0.6 0.8 1.0

θ

0.2

0.4

0.6

0.8

1.0

ℒ(θ|x)

Figure 21: The likelihood function of
the fairness of a coin given two coin
flips resulting in heads. The maxi-
mum likelihood estimate θ̂ is 1. This
illustrates a key difference between the
likelihood and a probability function.
Notice that the integral over the possi-
ble values of θ is much less than one.
The integral is actually 1/3.

Likelihood

Suppose we have a model with unknown parameter or set of parame-
ters θ. We have observations of a random variable X with probability
f (x|θ) depending on a fixed parameter θ. For a given observation
X = x, we can define the likelihood of a value of θ as

L(θ|x) = f (x|θ).

It’s important to note that the likelihood is not a probability and does
not have the same properties as a probability density function or
probability mass function. Specifically, the integral over possible
values of θ does not need to equal one. If the likelihood function
were a pdf, we might take the expected value of θ as the estimate.
Since the likelihood is not a pdf and we have no prior about our
parameter θ the best estimate we can choose will be based on the
maximum of the likelihood function.

0.2 0.4 0.6 0.8 1.0

θ

0.05

0.10

0.15

ℒ(θ|x)

HHT

HHHTT

HHHTTH

Figure 22: Example likelihood functions
of 3 different random variables.

0.2 0.4 0.6 0.8 1.0

θ

0.05

0.10

0.15

ℒ(θ|x)

HTTHT

HHHTT

HTTTT

Figure 23: Example likelihood functions
of 3 different observations of the same
random variable. The information con-
tent of the random variable increases
with the number of coin flips. With in-
creasing information from the random
variable, the spread of the likelihood
over θ decreases, suggesting a decrease
in variance. Note that the values of the
curves have been shamelessly scaled to
make this figure more readable.

Coin Flip Example. Take the example of a coin flip with unknown
fairness, θ = p(heads). We choose our random variable to be a pair of
IID flips. If our measurement is X = HH, and assume the coin is fair
(θ = 0.5), then the probability of this event is

f (X = HH|θ = 0.5) = 0.52 = 0.25.

The likelihood function for this observation is then L(θ|X = HH) =

θ2.
Based on this measurement and no prior information, our best

estimate of θ is
θ̂ = arg max

θ∈[0,1]
L(θ|x) = 1.

This estimate changes when we get a different outcome of 2 coin
flips or when we use a different random variable. One should expect
that the estimate should get better when our random variable con-
tains more information, regardless of the observed outcome of that
random variable. For the coin, we can choose a new random variable
to be a sequence of 3 coin flips. When we do this we also see that the
peak of our likelihood functions becomes sharper.

45

Maximum Likelihood Estimation

Given the curves shown in Fig. ??, how should we choose an estimate
of θ? We do what we always do to find extrema; take the derivative
and set it equal to zero. However, the likelihood function can take
some pretty inconvenient forms. When our random variable, X, is ac-
tually a set of random variables {x1, x2, ..., xn} the likelihood usually
has the form of a product of probabilities. For a set of independent
random variables like the coin flips,

L(θ|X = {x1, x2, ..., xn}) =
n

∏
1

f (xi|θ)

Rather than iteratively apply the product rule, it is common to use
the natural log of the likelihood. Since the logarithm is a strictly
increasing function, maximizing the log of the likelihood also max-
imizes the likelihood. Conveniently, multiplication in log space is
equivalent to addition, so we get the log-likelihood

l(θ|x) = logL(θ|X = {x1, x2, ..., xn}) =
n

∑
1

log(f (xi|θ)),

so we can simply sum the derivatives and avoid product rule. Note
that we did not choose the natural logarithm because we are trying
to measure some sort of information, so it is just a coincidence that
it shows up here as well as in the definition of the Shannon entropy
and relative entropy. Generally, the derivative of the log-likelihood is

∂

∂θ
log(f (x|θ)) = Dθ f (x|θ)

f (x|θ) .

To find the maximum likelihood estimate, simply solve for θ in
Dθ f (x|θ)/ f (x|θ) = 0

Fisher Information

Up until now, we have assumed that we already have all of our obser-
vations, but when trying to estimate a parameter of a robot, we have
control authority over the random variable we are observing. If we
get to choose our random variable, we could use two strategies. First,
we could insist on using a lot of measurements of the same thing as
our random variable and hope that, as with the coin flipping exam-
ple, the spread of theta decreases with increasing flips. Alternatively,
we can selectively observe random variables with high information.
To do this, we need to come up with a way to measure the information
about θ contained in X.

For an initial guess of θ and an observation X = x, Dθ l(θ|x) close
to zero implies that the observation was expected, so it doesn’t pro-
vide much new information. On the other hand, a low probability

46

event with |Dθ l(θ|x)| >> 0 implies that X contains a lot of informa-
tion about θ.

Thus, we can use [Dθ l(θ|x)]2 to measure the information provided
by X.

Because X is a random variable, we take the expectation over x to
be the Fisher information.

I(θ) = E[Dθ l(θ|x)2] =
∫
[Dθ l(θ|x)]2 f (x|θ)dx =

∫ Dθ f (x|θ)2

f (x|θ) dx

There are a couple of other ways we can write the Fisher informa-
tion by taking advantage of the properties of the probability f (x|θ).
First, we know that the integral of f (x|θ) over x must be equal to 1,
so if f is differentiable we know that,∫

Dθ f (x|θ)dx = Dθ

∫
f (x|θ)dx = 0.

Furthermore, when f is twice differentiable,∫
∂2

∂θ2 f (x|θ)dx = D2
θ

∫
f (x|θ)dx = 0 0.2 0.4 0.6 0.8 1.0

θ

-20

-10

0

10

20

Dθ l(θ|x)

HHT

HHHTT

HHHTTH

Figure 24: Derivative of the log-
likelihood of 3 different random
variables.

Using these properties of f , we get that the expected value of the
derivative of log-likelihood is 0.

E[Dθ l(θ|x)] =
∫

Dθ l(θ|x) f (x|θ)dx =
∫ Dθ f (x|θ)

f (x|θ) f (x|θ)dx =
∫

Dθ f (x|θ)dx = 0

Now let’s look at a plot of the derivative of the log-likelihood (Fig. ??).
When there are a lot of values of θ that put the derivative near zero
this suggests there is not a lot of information about θ contained in the
random variable X because we are less certain about the particular
value of θ where there is a maximum. When the slope of Dθ l(θ|x)
is steeper it is clear that the value of θ that is equal to zero is more
unique. Another way to say this is that when the variance of Dθ l(θ|x)
is high, we are more certain of our estimate θ̂.

0.2 0.4 0.6 0.8 1.0

θ

-20

-10

0

10

20

Dθ l(θ|x)

HTTHT

HHHTT

HTTTT

Figure 25: Derivative of the log-
likelihood of 3 different measurements
of the same random variable. When
there are a lot of values of θ that are
near zero this suggests there is not a lot
of information about θ contained in the
random variable.

When we consider the value of the log-likelihood derivative for
a particular θ to be a random variable that occurs with probability
f (x|θ), we can view the Fisher information as a variance,

I(θ) = Var[Dθ l(θ|x)].

Often the most convenient choice for calculating the Fisher infor-
mation uses the second derivative of the log-likelihood.

D2
θ l(θ|x) = ∂

∂θ

[
Dθ f (x|θ)

f (x|θ)

]
=

D2
θ f (x|θ)− Dθ f (x|θ)2

f (x|θ)2 =
D2

θ f (x|θ)
f (x|θ) − [Dθ l(θ|x)]2

E[D2
θ l(θ|x)] =

∫ [D2
θ f (x|θ)
f (x|θ) − [Dθ l(θ|x)]2

]
f (x|θ)dx =

∫
D2

θ f (x|θ)dx−
∫
[Dθ l(θ|x)]2 f (x|θ)dx

47

Finally, we can write another formula for the Fisher information,

I(θ) = −E[D2
θ l(θ|x)] = −

∫
D2

θ log(f (x|θ)) f (x|θ)dx.

This also extends to an N× 1 vector of parameters θ = [θ1, θ2, ..., θN]
T .

In this case the Fisher information becomes an N × N matrix with
each entry being given by,

[I(θ)]ij = −E

[
∂2

∂θi∂θj
log f (x|θ)

]
.

So what exactly is the Fisher information measuring? It is measur-
ing the information about θ contained in X. This also gives us a measure
of how sure we are about our maximum likelihood estimate. If the
Fisher information is low—like our 2 coin flip example—we are less
sure of our estimate than if we had calculated a likelihood from a
random variable containing the outcomes of 5 flips.

Connection to Kullback-Leibler Divergence

The Fisher information is also related to the relative entropy or
Kullback-Leibler divergence of two parameterized distributions de-
scribing a random variable X. Say we have two distribution f (x|θ)
and f (x|θε), recall that there Kullback-Leibler divergence is given by,

DKL[f (x|θ)|| f (x|θε)] =
∫

f (x|θ)log
(

f (x|θ)
f (x|θε)

)
dx.

If we take the Taylor series approximation of this about θ = θ0, where
θε = θ0 + ε, we get,

DKL[f (x|θ0)|| f (x|θε)] = DKL[f (x|θ0)|| f (x|θε)]+ ε
∂

∂θ
DKL[f (x|θ)|| f (x|θε)]

∣∣∣∣
θ=θ0

+
ε2

2
∂2

∂θ2 DKL[f (x|θ)|| f (x|θε)]

∣∣∣∣
θ=θ0

+O3

If we take the limit as ε → 0, the first two terms are zero, because
the Kullback-Leibler divergence has an absolute minimum of 0 when
f (x|θ) = f (x|θε), so its derivative at θ0 is 0. This leaves only the
second-derivative term.

∂

∂θ
DKL =

∫
Dθ f (x|θ)log

(
f (x|θ)
f (x|θε)

)
+ Dθ f (x|θ)dx

∂2

∂θ2 DKL =
∫

D2
θ f (x|θ)log

(
f (x|θ)
f (x|θε)

)
+

Dθ f (x|θ)2

f (x|θ) + D2
θ f (x|θ)dx

The first term goes to zero when ε = 0 and the last term is zero
because f (x|θ) is a probability over x. This leaves

∂2

∂θ2 DKL =
∫ Dθ f (x|θ)2

f (x|θ) dx = I(θ),

48

so the second derivative of the K-L divergence for distributions
parameterized by nearby values of θ is the Fisher information.

Calculating the Fisher Information & Choosing a Random Variable

Going back to our coin flip example, where we reasonably asserted
that increasing the number of observed flips should increase our
information about θ, we want to confirm that this assumption was
correct. To do this, we calculate the Fisher information of 3 different
random variables (2 flips, 3 flips, and 5 flips) and plot them across all
possible values of θ.

Example of the Fisher Information Calculation for 2 coin flips.

The Fisher information is an expectation over all possible values of X,
so let’s first write down the possible values a pair of coin flips could
take

X = [TT, HT, TH, HH],

and the likelihood of each of those outcomes is

Lx(θ) =

(1− θ)2 x = TT

(1− θ)θ x = TH

θ(1− θ) x = HT

θ2 x = HH

The log-likelihood is then

lx(θ) =

2Log(1− θ) x = TT

Log(1− θ) + Log θ x = TH

Log θ + Log(1− θ) x = HT

2Log θ x = HH

Taking the second derivative of that, we get

D2
θ lx(θ) =

− 2
(1−θ)2 x = TT

− 1
(1−θ)2 − 1

θ2 x = TH

− 1
θ2 − 1

(1−θ)2 x = HT

− 2
θ2 x = HH

We calculate the Fisher information by taking the expectation of
this derivative over all possible x,

I(θ) = ∑
X

D2
θ lx(θ) ∗ Lx(θ) =

4
(1− θ)2 +

2
θ2 .

49

Performing a similar calculation for random variables of 3 flips
and 5 flips, we can see that our assumption about the relative amount
of information about θ contained in each possible random variable
was correct (fig. ??). The Fisher information does increase with in-
creasing number of coin flips.

2 flips I(θ) = 2
θ−θ2

3 flips I(θ) = 3
θ−θ2

5 flips I(θ) = 5
θ−θ2

Figure 26: ÃćÂĂÂć

0.2 0.4 0.6 0.8 1.0

20

40

60

80

2 flips

3 flips

5 flips

Figure 27: ÃćÂĂÂć fix this! The Fisher
Information for Random Variables in
the Coin Flip Example.

Now, coin flips are a great example to help us reason about the
information contained in a random variable, but they don’t have a lot
to do with robots. When trying to estimate a parameter of your robot
or its environment, we also get to choose our random variable. For
instance, you have the option to choose between two different sensor
measurements. If one sensor measures 3 coin flips, the other sensor
measures 5 coin flips, and there is no energetic cost between the
two, you would choose the 5 coin flip sensor since it will on average
contain more information about your unknown parameter.

Let’s assume our random variable must be a set of measurements
over a fixed time. What does the possible set of random variables
that we can choose look like? Each element of the set is the mea-
surements over a trajectory. We might want to estimate the mass of
simple point-mass governed by F = ma where we get to choose the
forces applied over time and measure the acceleration, or we could
estimate the length of a cart-pendulum by choosing the trajectory of
the cart and measuring the angle. Every choice of input u(t) corre-
sponds to a different choice of our random variable X. In the case
of the point mass or the cart-pendulum, one choice is to apply zero
force or zero velocity for all time. This particular choice won’t give
us much information even if there is process noise and measure-
ment noise that changes our measurements over time. However, if
we choose a constant force or constant velocity, we can probably get
a little more information. Finally, the best choice of a random vari-
able is probably one where our inputs vary over time. We can find
the optimum of this using our dynamics and measurement model to
formulated an optimization on the Fisher information.

In order to optimize with respect to Fisher Information, we must
choose a measure on the Fisher Information matrix. A few reasonable
measures are to use the determinant, trace, or maximum/minimum
eigenvalue of the matrix.

50

Posterior Probabilities & Infotaxis

Posterior Probability

Last lecture, we talked about how we could choose our random vari-
able X to contain the most information about an unknown parameter
θ regardless of the particular observation of X that we might get. To
motivate this we used the example of a coin flipping experiment,
where increasing the number of coin flips contained in our random
variable increased the information we would get for any observation
of the set of coin flips. By taking a specific observation we could use
maximum likelihood estimation to estimate our model parameter θ.

However, that model of parameter estimation doesn’t allow us to
combine information we get from an observation with prior knowl-
edge that we have about the model. This prior knowledge usually
comes from some type of measurement, but might be based on as-
sumptions of the probability of our parameter taking on certain val-
ues. Since we are often taking measurements sequentially in time, we
can use our knowledge of the previous measurement to improve our
estimate of the parameter value θ.

For the coin flip example from last lecture, we assumed we had no
idea what the fairness of the coin might be. Now let’s assume instead
that we have observed a lot of these coins which are manufactured
the same way and on average the coins are fair (E[θ] = E[p(heads)] =
0.5) and are normally distributed with a variance of 0.01. This distri-
bution defines our prior as

p(θ) =
1√

2πσ2
exp

(
− θ − 0.5

2σ2

)
.

If we pull a coin from this distribution and flip it twice observing x =

HH, what is the probability density function of θ of this particular
coin? Bayes rule says that,

p(θ|x) = f (x|θ)p(θ)
p(x)

.

This is called the posterior probability distribution of θ given X = x.
The posterior distribution is proportional to the Prior × Likelihood,
normalized by the total probability of x which in this case is given by
p(x) =

∫ 1
0 f (x|θ)p(θ)dθ.

0.2 0.4 0.6 0.8 1.0
θ

1

2

3

4

Prior p(θ)

Likelihood f(x|θ)

Posterior p(θ|x)

Figure 28: The Posterior Probability of
the fairness of a coin.

This is the same concept behind the Bayesian filters discussed in
lecture ***. In the case of the particle filter, our prior was the previous
belief forward simulated based on the dynamics of the system. You’ll
recall that we reweighted those particles according to how likely
they were given a new measurement. The new weights defined our
posterior distribution and provided us with an improved estimate of

51

the true state of the system. The same is true for our update on p(θ)
in fig. 29.

Choosing Inputs Based on the Posterior

If our goal is to determine a parameter θ of our model, we discussed
that we can choose the random variable that we observe based on our
inputs. Choosing the optimal inputs involves maximizing a measure
on information gain, such as the Fisher information or minimizing
the entropy of your posterior. The general form our posterior will
take is

px(θ0) =
Lθ0(x)p(θ0)∫
Lθ(x)p(θ)dθ

,

where x is our current measurement or a statistic on our history of
measurements. An example of entropy minimization is a search pro-
cess where the unknown location of an object, a door, or the source
of a chemical plume is the unknown parameter. Search problems are
often view as a balance between exploitation (going to the highest
probability area of the posterior) and exploration (collecting more
information to incorporate into the posterior).

Algorithm 2: Infotaxis - Entropy Re-
ducing Control for Source/Object
LocalizationInitialize the entropy of the posterior distribution S and the prior

p(θ).

while S 6= 0 do
Take a measurement x
Update the posterior px(θ)

Recalculate S from the posterior
Calculate a control input ui = arg min

u
E[∆S(u)]

Update the prior p(θ) based on last measurement
Apply the input ui

end while

Infotaxis

An example of an entropy reducing controller for chemical source
location is infotaxis8 The chemical source emits particles which the 8 Vergassola, Villermaux, & Shraiman,

‘Infotaxis’ as a strategy for searching
without gradients, Nature, 2007.

agent detects with a probability dependent on the distance from
the source. The times and coordinates of previous hits along the
trajectory r(t) are stored in the random variable Tt, which acts as the
information signal. The posterior probability of the source location r0

is then

Pt(r0) =
Lr0(Tt)∫
Lx(Tt)dx

.

52

where the posterior probability of all previously visited locations
must be zero, since we know that we did not find the source in those
locations. In other words, the total probability P(r0) is 0 for all previ-
ously visited locations and all other locations have equal probability.
As a result, the total probability can be taken outside the integral
which is only over unvisited points in the space.

Given this posterior probability, there are a few options about how
to optimize your movements to find the source location. First, you
can choose to use some sort of random walk around the space with
not particular preference for what direction your next action will take
you. Alternatively, you can move towards the area of highest proba-
bility. If that happens to be the source location, we’re done. The new
posterior is a delta function and the entropy goes to zero. However, if
that’s not the case we can update our posterior and move to the new
highest probability area. This iterative process represents complete
exploitation at every time step. We can also choose to move based on
maximum information gained or maximum entropy reduction.

Figure 29: Results of a Monte Carlo test
of the time to localization for differ-
ent cost functions. Blue: The searcher
moves to the neighbor with highest
estimated probability according to
Pt(rj). Red: Local maximization of
E[∆S(rj)|rj 6= r0]. Black: Infotaxis
search strategy. Purple: Local maxi-
mization of the estimated number of
hits h(rj).

Unfortunately, the entropy reduction is a function of the set of
encounters/event Tt that might occur after applying the next input,
making ∆S itself a random variable. Rather than directly maximizing
our entropy reduction we must evaluate our possible actions based
on the expected change in entropy. In a grid world, we can move to
the 4 nearest neighbors or stay in place. If our current entropy is
S, then for each of the five possible actions we could take, we will
reduce our entropy to zero (∆S(rj) = −S) with probability Pt(rj) if
we encounter the source at the next step. All other possible entropy
reductions with happen with probability 1− Pt(rj).

E[∆S(rj)] = E[SPt+1(r0)
−SPt(r0)

] = Pt(rj)(−S)+ (1− Pt(rj))E[∆S(rj)|rj 6= r0]

Within this expectation, there is another expectation we must
consider, E[∆S(rj)|rj 6= r0]. This expectation is the weighted sum of
the entropy reduction for any possible number of hits k in the next ∆t
seconds,

E[∆S(rj)|rj 6= r0] = ∑
k

ρk(rj)∆Sk.

In the case of the chemical plume in the infotaxis paper, they as-

sume the number of hits is Poisson distributed, so ρk(rj) =
h(rj)e−h(rj)

k! .
Rather than computing the sum over all possible k they make an
approximation using only a small value of k.

Note that because we are limiting ourselves to only 5 possible
input values, this is a local optimization method rather than a global
method. This means that if there is more than one source, object or
door, the agent will find only one and stop looking for any other
sources once it finds one.

53

Discussion

Figure 30: Infotaxis setup of door
sensor

Algorithm 3: Infotaxis for the door
sensorInitialize the prior as a uniform distribution and initialize entropy

as the entropy of the prior.

while S 6= 0 do
Take a measurement x of 0 or 1
Update the posterior px(θ) =

Lr0 (x)p(r0)

p(x)

• Lr0(x) = a uniform distribution over the 4 nearest squares in
every direction.

• p(r0) =0 f or all visited squares

1/(Total number o f unvisited squares) else

• p(x = 1) = Number o f black squares
Total number o f squares

• p(x = 0) = 1− p(x = 1)

Recalculate S from the posterior
Calculate a control input ui = arg min

u
E[∆S(u)]

Update the prior p(θ) based on last measurement
Apply the input ui

end while

54

Process of infotaxis with the door sensor.

1. Initialize the belief over where the door sensor is as a uniform
distribution over the whole search space. You will need to repre-
sent the belief as a 2D grid, each cell of the grid will be assigned a
value representing the likelihood that the door is in this grid. The
belief will be over the whole search space throughout the whole
process.

2. Compute the entropy of the belief grid.

3. Take a binary measurement at the current location of the robot.
You will need to simulate this measurement using the given mea-
surement. Simulation of the measurement will be similar to flip-
ping a potentially unfair coin.

4. Perform Bayesian update for the belief. The belief, as a 2D grid, is
a discretized representation of the distribution p(x), this will the
prior belief. The given measurement model, denoted as m(x, s, z),
serves as the likelihood function. It describes the likelihood of
taking the measurement z (which is either 0 or 1) given the robot
position at x and the door location at s. In each time step, you
know where the robot position is and what the measurement is,
it is the door location s you are trying to estimate with the belief,
so think about how to compute Bayesian posterior in this case.
Remember to normalize your 2D grid after the Bayesian update.

5. Compute the entropy of the updated belief.

6. Now it is time to choose the next action. For each of the five can-
didate actions (left, right, up, down, stay), do the following:

(a) Take the candidate action (hypothetically).

(b) Take a hypothetical measurement of 1, which means you
do detect the door after taking the action, compute what the
Bayesian posterior of the belief will look like. Then, compute
how much the entropy of the belief decreases, compared to the
entropy before the robot takes the hypothetical action.

(c) Repeat the above step, but take a hypothetical measurement of
0.

(d) Compute the expected reduction of entropy related to the
hypothetical action, by summing up the entropy reduction
when the hypothetical measurement is 1 and when it is 0. It is
going to be a weighted sum (what will be the weights in order
for this summation to be an expectation?).

7. Take the action that has the largest expected reduction of entropy.

55

8. Take a new measurement and repeat the process until the entropy
of the belief is below a threshold, then the door is at the grid cell
with the highest likelihood.

56

Ergodicity

Expected Information Density

The expected information density in an active sensing problem can
be based off of a number of metrics. We could used entropy reduc-
tion, information gain maximization, or Fisher information to define
the expected utility of our measurement. One way to implement
active sensing is to iteratively update the EID and maximize informa-
tion gain based on the current best estimate, but this is likely to fail
if the initial EID is wrong. It is particularly prone to ignoring high
information areas when there are multiple peaks in a distribution.

Assuming Gaussian noise, the Fisher Information matrix for es-
timation of parameter θ given a measurement at a location x from a
measurement model Υ(x, θ) simplifies to

I(x, θ)i,j =
1
σ2

∂2Υ(θ, x)
∂θi∂θj

.

Our estimate of θ is a random variable with prior p(θ), so we take
our expected information density as the expectation over the Fisher
information with probability p(θ) such that,

φi,j(x) =
1
σ2

∫
θi

∫
θj

∂2Υ(θ, x)
∂θi∂θj

p(θi, θj)dθjdθi.

We can now use the same optimality metrics (trace, eigenvalue, deter-
minant) that we could on the Fisher information to define the EID. If
we choose to use D-optimality, the EID is

EID(x) = det φ(x).

Definitions of Ergodicity

Ergodicity carries slightly different but related definitions in other
fields. If you do an internet search of ergodicity or ergodic theory,
you might find:

• Markov Chains: A state in a Markov chain is ergodic if you have
a nonzero probability of exiting the state and the probability of
eventually returning is 1. If all states are ergodic, the chain is
ergodic.

• Signal Analysis: An process is ergodic if the time average of a sig-
nal is equal to the average across an ensemble if signals. In other
words, the signal is ergodic if the statistics of the signal matches
the statistics of the ensemble. Therefore, each signal is representa-
tive of the process, and its possible to estimate the statistics of the
ensemble from any one signal.

57

• Dynamic Systems: A system is ergodic if it has the same behavior
averaged over time as it does averaged over the space of system
states.

When we use the term ergodicity in this class, we are specifically
referring to the ergodicity of a trajectory x(t) with respect to a distri-
bution φ(x). Specifically we say a trajectory is perfectly ergodic with
respect to a distribution if the amount of time spent a neighborhood
N of the state space is proportional to the spatial distribution in the
neighborhood

∫
N φ(s)ds. This is related to the signal analysis defini-

tion in that we are trying to create trajectories that are representative
of a reference distribution.

Measurement

How might we measure this using information theory? Markov
chains test eigenvalues, which clearly isn’t an option for trajectories
over continuous space. The Kullback-Leibler divergence could proba-
bly be used to compare the relative entropy of two signals. Given the
experimental mean and variance of two Gaussian signals we could
easily compute the relative entropy to measure the degree to which
one represents the other. This has a couple of downfalls. First the K-L
divergence isn’t symmetric. Second, x(t) takes on only one state at
each time t, and as a consequence DKL between x(t) and φ(x) will
be generally infinite. Roughly speaking, this is because the variables
transverse to the trajectory at each time are being projected onto the
trajectory, indicating perfect knowledge and therefore infinite infor-
mation.

In our earlier lectures, we looked at controlling trajectories based
on the L2 of the error such that we measured the distance between
two trajectories as

J(x(t)) =
∫
||xd(t)− x(t)||Qdt.

However, this sort of subtraction only works when the two things we
want to compare are over the same domain. Instead, we will need a
different norm or a way to represent the trajectory and distribution in
a different vector space.

Defining a Metric

Let’s create a metric by starting with our definition of ergodicity.
We said that a trajectory is ergodic when the time spend in a neigh-
borhood (i.e. a subset of the domain) is proportional to the spatial
distribution in that neighborhood. Suppose we define a spherical set
B(s, r) centered at s with radius r and an indicator function I(s,r)(y)

58

which is equal to one inside the sphere and 0 otherwise. We can then
define the average time spent in the set B(s, r) as

dt(s, r) =
1
t

∫ t

0
I(s,r)(x(τ))dτ.

The measure of the distribution on the same set is given by

φ̄(s, r) =
∫

U
φ(y)I(s,r)(y)dy.

If the trajectory is ergodic, then limt→∞ dt(s, r) = φ̄(s, r) for any
pair of (s, r). If this is true for any pair, it must also be true for the
infinite sum of these pairs, so one could quantify how far the time
averages on these sets are from their spatial averages by taking the
integral

E2(t) =
∫ R

0

∫
U
(dt(s, r)− φ(s, r))2dsdr, R > 0.

Let’s consider instead an alternative way to represent the trajec-
tory, by constructing a distribution,

C(x) =
1
t

∫ t

0
δ(x− x(τ))dτ,

representing the spatial statistics of the trajectory x(t). Recall that
Dirac delta functions fulfill all of the properties of a probability den-
sity function, but as was discussed infotaxis, they take on a singular
value with infinite information. The inner product 〈C, f 〉 of this dis-
tribution and any function is defined as

〈C, f 〉 = 1
t

∫ t

0
f (x(τ))dτ.

So we could rewrite average time spent in B(s, r) as dt(s, r) = 〈C, I(s,r)〉.
This allows us to write the Fourier coefficients of the spatial statistics
of the trajectory as

ck = 〈C, Fk〉 =
1
T

∫ T

0
Fk(x(t))dt,

using Fourier basis functions of the form,

Fk(x(t)) =
1
hk

n

∏
i=1

cos
(

kiπ

Li
xi(t)

)
.

At each time, the state x(t) is n-dimensional and the subscript k
is multi-index over the coefficients of the multi-dimensional Fourier
transform. The normalizing factor hk ensures that Fk is an orthonor-
mal basis and Li is a measure of the length of the dimension. In 2

dimensions, hk takes the form,

hk =

(∫ L1

0

∫ L2

0
cos2(

k1π

L1
x1)cos2(

k2π

L2
x2)dx1dx2

)1/2

.

59

Using the same basis functions, we can compute the coefficients of
the spatial distribution,

φk = 〈φ(x), Fk〉 =
∫

X
φ(x)Fk(x)dx

. Now, the Fourier representations of C and φ are in the same vector
space called a Sobolev space which also happens to form a Hilbert
space. The important thing to take away from this is the a vector
space have a particular notion of an inner product or norm to define
the distance between two elements in the vector space. The distance
between C and φ(x) as given by the Sobolev space norm of the nega-
tive index H−s is

ε(t) =
K

∑
k1=0

...
K

∑
kn=0

Λk|ck − φk|2

The coefficient Λk = (1 + ||k||2)−s where s = n+1
2 places larger

weights on lower frequency information.
It turns out that requiring ε to approach zero is equivalent to re-

quiring the time average of the Fourier basis function to converge to
the spatial averages of the Fourier basis functions. Additionally, it can
be shown that ε(t) and E(t) are equivalent metrics, since there exists
bounded constants such that

C1ε(t) ≤ E2(t) ≤ C2ε(t).

Similar metrics can be derived for ergodicity using other basis func-
tions such as wavelets. However, the primary reason for using this
metric with Fourier basis functions is that it is differentiable with re-
spect to x(t). This will be useful when we want to actually define a
cost on this metric in the next lecture.

60

A Geometry Perspective of Ergodic Metric

What is a distance?

We start by asking the question: what is a distance? We often take
this concept as granted, but defining distance might be trickier than
we think.

A distance is a function. It is defined over a topological space,
such as the Euclidean space, and it maps any two points in the space
to a non-negative real number. Denote the space as S , we can define
as a function to be:

d : S × S 7→ R+
0 (8)

Furthermore, a valid distance metric should satisfy the following four
properties:

1. (Identity) The distance between two identical points should be
zero:

d(s, s) = 0, ∀s ∈ S (9)

2. (Symmetry) The order of the two points should not affect the
distance:

d(s1, s2) = d(s2, s1), ∀s1, s2 ∈ S (10)

3. (Positivity) The distance between two distinct points should al-
ways be larger than zero:

d(s1, s2) > 0, ∀s1 6= s2 ∈ S (11)

4. (Triangle inequality) Given three arbitrary points, the following
inequality holds:

d(s1, s3) ≤ d(s1, s2) + d(s2, s3) (12)

The equality holds if and only if s3 can be represented as a linear
combination of s1 and s2.

One of the most commonly used distance metric is Euclidean
distance. Given two 3D points s1 = [x1, y1, z1] and s2 = [x2, y2, z2], the
Euclidean distance be defined as:

d(s1, s2) =
√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (13)

But why does it look like this? There are two explanations, both of
them involve the concept of inner product, so let’s start with that.

61

Similar to distance, an inner product is a mapping that maps two
arbitrary points of a space to a non-negative real number, it is often
denoted as a set of angle brackets:

〈·, ·〉 : S × S 7→ R+
0 (14)

Again, it must satisfy some properties:

1. (Non-negativity) For two arbitrary points, we have:

〈s1, s2〉 ≥ 0, ∀s1, s2 ∈ S (15)

The equality holds if and only if s1 = 0 or s2 = 0

2. (Symmetry) 〈s1, s2〉 = 〈s2, s1〉∀s1, s2 ∈ S

3. (Linearity) 〈s1, a · s2 + b · s3〉 = 〈s1, a · s2〉+ 〈s1, b · s3〉 = a · 〈s1, s2〉+
b · 〈s1, s3〉

One important reason that we care about inner product is that
it leads to the definition of norm, which is a mapping that maps
a point to a non-negative real number. For example, in the a 3-
dimensional Euclidean space, the inner product of two points (vec-
tors) s1 = [x1, y1, z1] and s2 = [x2, y2, z2] is defined as:

〈s1, s2〉 = x1x2 + y1y2 + z1z2 (16)

And the Euclidean norm of a point is defined as the square root of
the inner product of the point with itself:

|s1| =
√

x2
1 + y2

1 + z2
1 (17)

More importantly, the Euclidean norm is the distance between the
point and the origin of the space. This further leads to the definition
of Euclidean distance, which is the Euclidean norm of the subtraction
between two points:

d(s1, s2) = |s1 − s2| =
√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (18)

However, this is not the full story. The last myth here is, when we
represent a 3D point through its xyz coordinate s1 = [x1, y1, z1], what
do we actually mean? A topological space is defined on top of a set
of orthonormal bases. For an n-dimensional space, the orthonormal
bases are a set of n points (vectors) {e1, . . . , en} ∈ S with the follow-
ing properties:

1. (Normality) 〈ei, ei〉 = 1, ∀i ∈ [1, . . . , n]

2. (Orthogonality) 〈ei, ej〉 = 0, ∀i 6= j ∈ [1, . . . , n]

62

The orthonormal bases define the coordinate system of a space,
which allows us to use a set of numbers to represent a point in the
space. For the xyz coordinate in an 3D Euclidean space, the most
commonly used orthonormal bases are ex = [1, 0, 0], ey = [0, 1, 0], ez =

[0, 0, 1], the point can then be represented as the linear combination of
the orthonormal bases weighed on the coordinate values:

s1 = [x1, y1, z1] = x1 · ex + y1 · ey + z1 · ez (19)

This further implies that, if we define a different set of orthonormal
bases, denoted as {e′x, e′y, e′z}, we can find the coordinates on the new
orthonormal bases by taking the inner product between the original
coordinate and the new orthonormal bases:

s1 = [x1, y1, z1] = x1 · ex + y1 · ey + z1 · ez (20)

= 〈s1, e′x〉 · e′x + 〈s1, e′y〉 · e′y + 〈s1, e′z〉 · e′z (21)

This is also often called as coordinate transformation.
Based on the concept of orthonormal bases, we can extend the

definition of Euclidean distance to an arbitrary set of orthonormal
bases:

dex ,ey ,ez(s1, s2) =
√
(〈s1, ex〉 − 〈s2, ex〉)2 + (〈s1, ey〉 − 〈s2, ey〉)2 + (〈s1, ez〉 − 〈s2, ez〉)2

(22)

Now, after we re-derive the Euclidean distance metric over an
arbitrary set of orthonormal bases, we are looking beyond the finite-
dimensional Euclidean space, instead we are looking to define the
Euclidean distance between two functions in a similar way.

Distance between two functions

We first define the space of all functions that map from the same
space to the same other space F = { f | f : X 7→ Y}. In order to define
the distance between any two functions f1, f2 from the space, we start
with extending the fundamental concepts such as inner product to
this function space.

The inner product between two functions is defined as:

〈 f1, f2〉 =
∫
X

f1(x) f2(x)dx (23)

With this definition, for a set of orthonormal bases {g1, g2, g3, . . . }
of the function space, it must satisfy the following properties:

1.
∫
X gi(x)gi(x)dx = 1, ∀i

2.
∫
X gi(x)gj(x)dx = 0, ∀i 6= j

63

Note that since the function space is infinite-dimensional, the or-
thonormal bases will have an infinite number of basis functions as
well.

Now, we can follow the derivation of the distance metric in metric,
the one based on the inner product with orthonormal bases, to derive
the distance between two functions:

d(f1, f2) =

√
∞

∑
i=1

(〈 f1, gi〉 − 〈 f2, gi〉)2 (24)

The more familiar format of the distance metric between two func-
tions is as follow:

d(f1, f2) =

√∫
X
(f1(x)− f2(x))2dx (25)

This format is derived on the top of a set of point-wise Dirac delta
basis functions defined as:

gi(x) = δsi (x) =

+∞, if x=si, si ∈ X
0, otherwise

(26)

Distance between a trajectory and a distribution

The real question we are interested in is to compute the distance
between a trajectory and a probability distribution. We denote the
trajectory as a mapping s : [0, T] 7→ X and the probability density
function p : X 7→ R+

0 .
The first step is to transform the trajectory, which is now a func-

tion of time, to the same domain as the probability density function,
which is a function of space. To do so, we define the empirical distri-
bution of the trajectory using the Dirac delta function:

Φs(x) =
1
T

∫ T

0
δs(t)(x)dt (27)

The Dirac delta function has a very nice property regarding inner
product, given an arbitrary delta function δs(x) and an arbitrary
function f (x), we have:

〈δs(x), f (x)〉 = f (s) (28)

Based on this property, the inner product between the empirical
distribution of the trajectory Φs(x) and an arbitrary function f (x) can

64

be computed as closed-form:

〈Φs(x), f (x)〉 =
∫
X

Φs(x) f (x)dx (29)

=
∫
X

(
1
T

∫ T

0
δs(t)(x)dt

)
f (x)dx (30)

=
1
T

∫ T

0

(∫
X

δs(t)(x) f (x)dx
)

dt (31)

=
1
T

∫ T

0
f (s(t))dt (32)

This means, given a trajectory and a orthonormal basis function,
we can compute the coefficient of the orthonormal function in closed-
form. This gives us the distance between a trajectory and a distribu-
tion, given a set of orthonormal basis functions {g1(x), g2(x), g3(x), . . . }:

d(s(t), p(x)) =

√
∞

∑
i=1

(
〈Φs(x), gi(x)〉 − 〈p(x), gi(x)〉

)2
(33)

Normalized Fourier basis functions

So far our discussion assumes we have a set of orthonormal basis
functions, now we define a set of orthonormal functions that enable
efficient numerical approximation, based on Fourier basis functions.

Define a function f : X 7→ R, where X = [Ll
1, Lu

1] × · · · ×
[Ll

d, Lu
d] ⊂ Rd is a d−dimensional rectangular space, Ll

i and Lu
i are the

lower and upper bound for the d-th dimension, respectively. For any
function defined as above, we can define the following normalized
Fourier basis functions as the bases for orthonormal decomposition:

fk(x) =
1

hk

d

∏
i=1

cos
(

k̄i(xi − Ll
i)
)

(34)

where

x = (x1, x2, . . . , xN) ∈ Rd, k = [k1, · · · , kd] ∈ [0, 1, 2, · · · , K]d ⊂Nd

k̄i =
kiπ

Lu
i − Ll

i
, hk =

(
d

∏
i=1

Lu
i − Ll

i
2

) 1
2

65

Control Synthesis for Ergodic Objectives

Defining a cost

In this lecture we will start to bring together the concepts we learned
about continuous time optimal control and what we have discussed
with regards to information measures and their corresponding objec-
tive functions. To begin, we reintroduce a system with dynamics,

ẋ = f (x(t), u(t)), x(0) = x0.

Previously, we have had cost functions of the form,

J =
∫ t

0
l(x, u)dt =

∫ t

0
(xd − x)TQ(xd − x) + uT Ru dt,

where we minimize J with respect to u subject to the constraints of
the dynamics by optimizing a descent directions at each step of an
iterative process. When we want our system to maximize information
instead of minimizing error the form our cost function takes changes.
If we use the ergodic metric described in the previous lecture our cost
is

J(x(t), u(t)) = q ε(x(t)) +
∫ T

0
u(t)T Ru(t)dt

= q
K

∑
k1=0

...
K

∑
kn=0

Λk

(
1
T

∫ T

0
Fk(x(t))dt− φk

)2

+
∫ T

0
u(t)T Ru(t)dt.

For brevity, we will using a single summation and multi-index k to
represent the nested summations of the squared term over K + 1 basis
functions for each of the n dimensions in the rest of the notation in
this lecture.

Derivative of an Ergodic Objective

Now, let’s start to fill in an iterative algorithm that finds the mini-
mizer of that cost function. First, we need a terminal condition for
our algorithm. A natural choice for this is to use the first derivative
of the cost—the necessary condition for a minimizer. We want the
partial derivative of J with respect to ξ = (x(t), u(t)) to be less than
some small value ε. More precisely, our terminal condition should be
||DJ(ξ) · ζ|| > ε—the directional derivative of the cost function. We
calculate DJ(ξ) · ζ by taking the directional derivative in the direction
ζ = (z(t), v(t)).

d
dε

J(ξ + εζ)|ε=0 =
d
dε

[
q

K

∑
k=0

Λk

(
1
T

∫ T

0
Fk(x(s) + εz(s))dt− φk

)2

+

∫ T

0
(u(t) + εv(t))T R(u(t) + εv(t))dt

]
ε=0

66

d
dε

J(ξ + εζ)|ε=0 =

[
q

K

∑
k=0

Λk

[
2
(

1
T

∫ T

0
Fk(x(s) + εz(s))ds− φk

)
·
∫ T

0

1
T

DFk(x(t) + εz(t))z(t)dt
]

+
∫ T

0
(u(t) + εv(t))T R · v(t)dt

]
ε=0

DJ(ξ) · ζ = q
K

∑
k=0

Λk

[
2
(

1
T

∫ T

0
Fk(x(s))ds− φk

)
·
∫ T

0

1
T

DFk(x(t))z(t)dt
]
+
∫ T

0
u(t)T R · v(t)dt

This Euclidean norm (or weighted norm) of this expression is the
stopping criteria for our optimization. When this derivative is close
to zero, we have found a local extrema.

Finding the Direction of Steepest Descent

Now that we have a termination criteria, we can establish what we
should be doing during each iteration. If we want to do something
like gradient descent, we need to find a direction ζ that maximizes
the change in J subject to some cost on the magnitude of ζ. Back in
lecture 5, we wrote the general form of the derivative of the cost on
state error as

DJ(ξ) · ζ =
∫ T

0
Dl(ξ) · ζdt =

∫ T

0
Dxl(ξ)z(t) + Dul(ξ)v(t)dt.

We can rewrite our expression for the derivative so that it is in this
single integral form by pulling the experession in parentheses into
the second integral and switching the order of our summation and
integral to get

DJ(ξ) · ζ =
∫ T

0
q

K

∑
k=0

Λk

[
2
(

1
T

∫ T

0
Fk(x(s))ds− φk

)
· 1

T
DFk(x(t))

]
· z(t)+u(t)T R · v(t) dt.

Defining aT(t) = q ∑K
k=0 Λk

[
2
(

1
T
∫ T

0 Fk(x(s))ds− φk

)
· 1

T DFk(x(t))
]

and bT(t) = u(t)T R, we can write the derivative in the form,

DJ(ξ) · ζ =
∫ T

0
aT(t) · z(t) + bT(t) · v(t)dt.

We can now choose ζ as a minimizer of a quadratic cost

g(ζ) =
∫ T

0
Dl(ξ) · ζ dt +

1
2
〈ζ(t), ζ(t)〉,

subject to constraint ˙z(t) = A(t)z(t) + B(t)v(t), where A(t) =

D1 f (x, u) and B(t) = D2 f (x, u). We have not yet established what the
quadratic operator placing a cost on the magnitude of ζ should be.
First, we know that since ζ is a function of time, we should integrate
it. Second, ζ is part of a vector space, so we get to define a norm.

67

This could be the Euclidean 2-norm or the weighted 2-norm where
we define a Q and R such that they are symmetric positive semi-
definite matrices. The Hamiltonian for this system is then

H = aTz + bTv +
1
2
(zTQz + vT Rv) + pT(Az + Bv)

and applying Pontryagin’s maximum principle we can solve Hamil-
ton’s equations

ż = Az + Bv

ṗ = −a−Qz− AT p

0 = b + Rv + BT p

to get the optimal direction ζ. As in our iLQR solution, if we assume
p = Pz + r, we can solve the standard Riccati differential equation to
find our direction of steepest descent.

ż(t) = A(t)z(t) + B(t)v(t), z(0) = 0,

v(t) = R(t)−1B(t)T P(t)z(t)− R(t)−1B(t)Tr(t)− R(t)−1b(t)

Ṗ(t) = P(t)B(t)R(t)−1B(t)T P(t)−Q(t)− P(t)A(t) + A(t)T P(t)

ṙ(t) = −(A(t)− B(t)R(t)−1B(t)T P(t))Tr(t)− a(t) + P(t)B(t)R(t)−1b(t)

Applying the Update to ξ

To determine the step size to take in the optimal direction, one can
use an Armijo line search, or use second order methods to determine
the appropriate step size. Alternatively, one can just choose a con-
stant small value γ as the step size for every iterate. This is used to
update the control and trajectory according to

ui+1 = ui + γv

xi+1 = x(0) +
∫ T

0
f (xi+1(t), ui+1(t))dt

When Should φ be updated?

In our pseudocode, we would never update φ because unlike info-
taxis, we are computing an open-loop continuous trajectory. How-
ever, if we applied our ergodic cost to feedback controller or a reced-
ing horizon controller such as Sequential Action Controller, we have
a choice of what we can do after each new measurement is taken.
There are a couple of downsides to updating the coefficients φk of the
distribution. First, it is computationally expensive to recompute the
coefficients. There is also a risk that updating too frequently under
high uncertainty or modeling error will lead to overreactive explo-
ration strategies that perform poorly. In short, the answer might be to
almost never recompute the distribution coefficients.

68

Algorithm 4: Ergodic Exploration

Initialize the distribution coefficients φk, ξ0, DJ(ξi) · ζi.

i = 0
while ||DJ(ξi) · ζi|| > ε do

i=i+1

Calculate descent direction:
ζi = arg min

ζ

DJ(ξi) · ζi +
1
2 〈ζi, ζi〉

Choose step size γi using Armijo, second order methods, or a
small value.

Update the control, ui = ui−1 + γivi.
Update the trajectory, xi = x(0) +

∫ T
0 (f (xi, ui))dt

end while

Nonparametric vs. Parametric Estimation/Models

What are the differences?. Trick question! They both have some pa-
rameters that define the estimation/models (we will be using this
language interchangeably). Basically, what makes parametric models
“parametric” is that assume we have a finite set of parameters θ that
is able to describe future predictions x given some data set (or ob-
served data) D. Nonparametric models, in contrast, do not make this
assumption on the finite set of parameters θ. In fact, nonparametric
models assume that the data distribution D can not be modeled by
a finite set of parameters, but rather an infinite set of parameters θ.
You might be thinking “how can anyone even compute this infinite
set of parameters?”. In this lecture (and the notes) we will overview
Gaussian processes as a way to define this infinite set of parameters
as a function. Moreover, we will discuss a Bayesian way of thinking
about nonparametric models for predictions based on observed data.

Before we begin, we will list some of the differences between para-
metric and nonparametric estimation from a set of data.

Parametric

• Models data set with a finite set of parameters θ

• Bounded model complexity

• Rigid structure (linear parametric models can only model at best
observed data with linear structure)

• Unbounded data (does not scale with the amount of data)

Nonparametric

• Infinite set of parameters model data

69

• Complexity grows with the number of data points

• Is very difficult to calculate when the observed data set is very
large

• Very flexible

Preliminary Information

Before diving into the wonderful world of Gaussian processes, we
must first lay down some knowledge that will be useful in under-
standing Gaussian processes and other nonparametric Bayesian anal-
ysis. To start, a Gaussian process is a Bayesian method of generating
models from some observed set of data D. This type of method gen-
erates a posterior predictive distribution, or rather, given the set
of data D, what is the most likely prediction ỹ given a test value x̃
knowing the existing data x? This is a type of regression problem
where we will be focusing on the use of Gaussian processes for mak-
ing future predictions from existing data. Another way you can think
about this is that Gaussian processes (and Bayesian methods) provide
you with a way of dealing with new data given that you already have
some old data and want to make use of it in some way.

The Gaussian (Normal) Distribution and some of its properties

Let us define x ∈ Rn to be a random variable with mean µ ∈ Rn

and covariance matrix Σ ∈ Rn×n.9 This random variable is normally 9 Σ is symmetric positive definite.

distributed (or is Gaussian distributed) if the probability function is
of the form

p(x | µ, σ) =
1

(2π)n/2|Σ|1/2 exp
(
−1

2
(x− µ)> Σ−1 (x− µ)

)
. (35)

In many textbooks, one writes samples from this distribution as
x ∼ N (µ, Σ).

Below are some properties of Gaussian distributions:

Normalization The integral over the whole space x is equal to 1.∫
x

p(x | µ, Σ)dx = 1 (36)

Marginalization Let’s say we have the probability p(x1, x2 | µ, Σ)
from the set where x = [x1, x2]. We can create the two distributions

p(x1) =
∫

x2

p(x1, x2 | µ, Σ)dx2 (37)

and
p(x2) =

∫
x1

p(x1, x2 | µ, Σ)dx1 (38)

70

by integrating out the variables x1 or x2. Note that x1 ∼ N (µ1, Σ11)

and x2 ∼ N (µ2, Σ22) where

µ =

[
µ1

µ2

]
Σ =

[
Σ11 Σ12

Σ21 Σ22

]
(39)

Conditioning We can define conditional distributions as

p(x1 | x2) =
p(x1, x2 | µ, Σ)∫

x1
p(x1, x2 | µ, Σ)dx1

(40)

p(x2 | x1) =
p(x1, x2 | µ, Σ)∫

x2
p(x1, x2 | µ, Σ)dx2

(41)

which are also Gaussian distributions with

x1 | x2 ∼ N (µ1 + Σ12Σ−1
22 (x2 − µ2), Σ11 − Σ12Σ−1

22 Σ21) (42)

x2 | x1 ∼ N (µ2 + Σ21Σ−1
11 (x1 − µ1), Σ22 − Σ21Σ−1

11 Σ12). (43)

Summation Two independent Gaussian random variables are also
Gaussian.

The following section, we will be using these identities for regres-
sion and generating predictions based on observed data.

Linear Regression with the Gaussian Distribution and Maximum Like-
lihood Estimation

Now that we have set up the preliminary equations we will now
concern ourselves with predictions of pairwise data (i.e., input x
gives us measurement y with noise, can we predict the measurement
ỹ from a new point x̃?).

Let us define an observed data set D = {(xi, yi)}N
i=1 of the pair

xi, yi (not to be confused with the previous notation) where xi is
input to the measurement yi with some noise. Here, xi ∈ Rn and
yi ∈ R (we can always write this observation is higher dimensions
but for clarity we will leave this is 1-D). For now, let’s assume that we
are doing linear regression and the pairwise data is assumed to be
generated from the equation

yi = θ>xi + ε (44)

where ε ∼ N (0, σ2) is the noise from our sensors. Here, the only
knowledge we have is the observed data set D and an assumption
on the noise. We do not know the noise value ε, but we do know the

71

variance of the noise σ2. Using the fact that we assume the noise is
normally distributed, we can write a Gaussian likelihood function

p(yi | xi, θ) =
1√
2πσ

exp

(
− (yi − θ>xi)

2

2σ2

)
(45)

over the parameters θ. Here Equation (45) provides us with a likeli-
hood distribution over the data set D which we can use to figure out
what is the most likely set of parameters θ that generated our data
set. This is essentially a maximum likelihood estimation where we
extremize the likelihood function to solve for the parameters θ.

Before we start to solve what the parameters θ might be, let us
rewrite Equation (45) as the full likelihood over the whole data set of
size N:

p(D | θ) =
N

∏
i=1

1√
2πσ

exp

(
− (yi − θ>xi)

2

2σ2

)
. (46)

Great! Now that we have this, we want to ... that is right! Take a
derivative of Equation (46) with respect to θ. Note that the derivative
is going to be a bit painful as there is a product over all the data
points and calculus has chain rule which makes the derivative very
tedious. We can do a trick that will make this optimization a bit
easier. To start, let us take the log of Equation (46):

log p(D | θ) =
N

∑
i=1

log p(yi | xi, θ)

= −N
2

log 2π − N log σ− 1
2σ2

N

∑
i=1

(yi − θ>xi)
2. (47)

Equation (47) is known as the log-likelihood function. Basically it is
exactly what the name suggests, the log of the likelihood function
which for us is a Gaussian which means it takes the form of the very
familiar linear regression. Taking the derivative of the log-likelihood
function and setting it to zero gives

∂

∂θ
log p(D | θ) = − 1

σ2

N

∑
i=1

(yi − θ>xi)xi = 0. (48)

We can rewrite this derivative in vector notation to make this easier

− 1
σ2 (~y− Xθ)>X = − 1

σ2~y
>X +

1
σ2 θ>X>X = 0 (49)

where

X =

x>1
x>2
...

x>N

 ∈ RN×n, and ~y =

y1

y2
...

yN

 ∈ RN . (50)

72

Note that you can’t just divide out X since it is a matrix and can be
zero. The solution to θ in Equation (49) is

θ> = ~y>X(X>X)−1 (51)

which for those interested (X>X)−1 is the pseudoinverse of X. We
can take the transpose and move things around, but you should get
the idea of maximum likelihood estimation and working directly
with likelihood functions from this example.

Quick Example

Quick example before we move on to Bayesian optimization. Let us
consider the function

y =

[
10.0
1.0

]T

x (52)

where x ∈ R2 and y ∈ R1. Let’s say our observed data set is

D = {([1, 2]>, 11.98), ([4, 10]>, 49.93), ([−1, 1]>,−8.97)} (53)

with assumed Gaussian noise with σ = 0.1. We can put things in the
right format with

X =

 1 2
4 10
−1 1

 and ~y =

 11.98
49.93
−8.97

 . (54)

Plugging this into Equation (51) gives

θ = [9.97349282, 1.00358852]>. (55)

Not exact, but close to the actual underlying function. With signif-
icantly more data, this approximation becomes closer and closer to
the true equation that generated the data. Note that this same anal-
ysis can be done for y ∈ Rm, but I will leave that up to you as an
exercise.

Bayesian Optimization for Linear Regression

We are going to switch gears and look at this same problem of linear
regression from a Bayesian view point. In the Bayesian world, we
often assume that we have some sort of prior over the parameters
θ (this can be uniform or normally distributed). For convenience,
let’s define θ ∼ N (0, σ2

θ I). We want to do the same that we did with
Maximum Likelihood estimation, but using the fact that we have a
prior on the parameters θ and that we have at our disposal Bayes’
rule to use old data to make predictions about new data.

73

We can define a posterior on the parameter using Bayes’ rule as

p(θ | D) = p(θ)p(D | θ)∫
θ p(θ)p(D | θ)dθ

=
p(θ)∏ p(yi | xi, θ)∫

θ p(θ)∏ p(yi | xi, θ)dθ
. (56)

Using this parameter posterior, based on the observed data D, we can
test new points x̃ for outputs ỹ using a posterior predictive distribu-
tion defined as

p(ỹ | x̃,D) =
∫

θ
p(ỹ | x̃, θ)p(θ | D)dθ. (57)

This is kind of hard and annoying to calculate. This can also be quite
difficult if the space of parameters θ is quite large. As it turns out, by
making the Gaussian assumption, we can explicitly write

θ | D ∼ N
(

1
σ2 A−1X>~y, A−1

)
(58)

ỹ | x̃,D ∼ N
(

1
σ2 x̃>A−1X>~y, x̃>A−1 x̃ + σ2

)
(59)

where A = 1
σ2 X>X + 1

σ2
θ

I and

X =

x>1
x>2
...

x>N

 ∈ RN×n, and ~y =

y1

y2
...

yN

 . ∈ RN . (60)

For those interested in the proof, I would recommend referring to:
Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning. MIT Press, 2006. Online: http://www.gaussianprocess.org/gpml/
which is a great source for learning more about Gaussian Processes
and more about the nitty gritty details.

So what is different in this solution than with the Maximum likeli-
hood method? Correct! There is an extra parameter that shows up in
the mean value of θ. Moreover, θ is now a distribution which we can
sample over. Interestingly, this solution is identical to the Ridge Re-
gression formulation of linear regression where there is an additional
regularization term (here that is 1

σ2
θ

I).

Quick example

Let’s revisit the example from before with

y =

[
10.0
1.0

]T

x (61)

and our observed data set is

D = {([1, 2]>, 11.98), ([4, 10]>, 49.93), ([−1, 1]>,−8.97)} (62)

74

with assumed Gaussian noise with σ = 0.1. We can put things in the
same format as before:

X =

 1 2
4 10
−1 1

 and ~y =

 11.98
49.93
−8.97

 . (63)

Let’s say we are pretty unsure of the parameter θ , so we choose
σθ = 10.0. Plugging this information into Equation (58) gives us

θ = [9.97315669, 1.00370931]> (64)

which is very close to what we originally calculated with Maximum
Likelihood estimation. So why do some prefer this method? Well, we
can calculate how unsure we are of the estimated parameter θ from
the data set. Specifically the term A−1 is our variance term which in
this case is

A−1 =

[
0.00502383 −0.00196169
−0.00196169 0.00086123

]
. (65)

This is a pretty powerful tool. We can use the data to provide a confi-
dence intervals over the parameter space.

In the case of active learning, we can use this to guide a controller
to minimize the variance as much as possible by looking at where in
the input vector x is there the most variance.

75

Moving onto Function Approximation

So now we are going to get into the interesting case of evaluating
nonlinear function mappings from x → y using this Bayesian ap-
proach. We will first consider just looking at a finite set of functions
and fitting the functions to old data points to estimate new data
points. We will then show that this analysis has some very interesting
structure that can be used to estimate all possible functions (a.k.a. the
Gaussian Process).

Let us consider the same set of data D. Instead of fitting the pa-
rameters θ, we want to fit over functions f (x)

yi = f (xi) + ε (66)

where f (x) = φ(x)>θ such that φ(x) is a function that maps Rn →
Rm. In other words, φ(x) maps input data points to an output of m
dimensional features. The motivation for this is that we want to use
Bayesian logic to choose the best function over the features that best
explains the data. Using the analysis from before for Bayesian linear
regression, we can write

f̃ | x̃, X,~y ∼ N (
1
σ2 φ(x̃)>A−1Φ~y, φ(x̃)>A−1φ(x̃)) (67)

where
Φ =

[
φ(x1), φ(x2), . . . , φ(xN)

]
∈ Rm×N (68)

and A = 1
σ2 ΦΦ> + 1

σ2
θ

I. Note that A is a matrix of size m×m and we

need to invert it. If the number of features m is very large, this inver-
sion is probably not the easiest thing to achieve. However, we can use
a bit of manipulation to get the following equivalent expression

f̃ | x̃, X,~y ∼ N (φ̃>ΣθΦ(K+σ2I)−1~y, φ̃>Σθ φ̃− φ̃>ΣθΦ(K+σ2I)−1Φ>Σθ φ̃)

(69)
where Σθ = 1

σ2
θ

I, φ̃ = φ(x̃), and K = Φ>ΣθΦ. Now, the matrix

K ∈ RN×N which means that our inversion is now determined by
the number of data points! Thus, you can have an arbitrarily large
number of basis functions without needing to have a large inversion.

If you take a look at the Bayesian linear regression, you can see
that in fact the equations are very similar where the only difference
is that you are transforming the input data x with some function
φ(x). Note that often this function is considered a set of features that
possibly describe the nonlinearities in the data.

Quick example

Let’s take the example of the data set D:

76

x data y data
-0.1 -0.9 -0.80291152

0.1 -0.1 -0.09101267

-0.2 -0.3 -0.33012962

-0.6 0.2 0.07270773

-0.4 -0.5 -0.55961684

0.2 0.1 0.15158343

generated from the equation

y =
[

x0 sin(x1)
] [0.2

1.0

]
(70)

where the noise ε ∼ N (0, 0.01) is normally distributed and the
parameters θ ∼ N (0, 1.0) are also normally distributed.

What is really great about Bayesian optimization is that we do not
need to know the functions that generate the data, but we can try out
any set of functions and get a good estimate. For us, let’s use

φtest(x) =
[

x0 x1 sin(x0) sin(x1)
]>

. (71)

Note that we are overloading the notation slightly (the subscript
in the function does not mean the data points xi, yi, but rather the
individual elements of xi ∈ R2. The Φ matrix is then

Φ =

x0,0 x1,0 x2,0 . . . xN,0

x0,1 x1,1 x2,1 . . . xN,1

sin(x0,0) sin(x1,0) sin(x2,0) . . . sin(xN,0)

sin(x0,1) sin(x1,1) sin(x2,1) . . . sin(xN,1)

 (72)

where xi,j is the jth element of the ith data point. If we look at Equa-
tion (67), we can see that θ = A−1Φ~y/σ2 which when we calculate it
becomes

θ =
[
0.20571431 0.03706383 0.0014112 0.95667461

]>
. (73)

Notice that the terms that do show up in the original equation have
weights that are similar where the other terms have small non-zero
values. Even though those equations do not show up, this optimiza-
tion method still uses those additional weights to make predictions.
If we have a larger data set, these values would be closer to zero.
Modifying σθ would also change our result for θ quite a bit. However,
the resulting predictions are very close to the original data set if one
were to test them out (you should try this our and convince your-
self). However, predictions elsewhere not within the data set might
be better or worse.

Now that we are able to use these tools to estimate parametric
models, you should be able to create distributions and beliefs over

77

data sets and functions. Thus, it is possible to use these distribu-
tions for ergodic control for instance, where you want to be ergodic
with respect to the likelihood of a measurement. Similarly, one can
compute the entropy of the distributions and use this for active sens-
ing/learning.

Larger Function Spaces (even Infinite)

Now we are moving on to the case where φ(x) is very large (and
possibly unknown). Essentially the Gaussian Process.

What do you notice about the feature vector φ(x) in Equation
(69)? It is a bit hard to see but in Equation (69), the feature vectors
always enter as an inner product in the various forms Φ>ΣθΦ,
φ(x̃)>ΣθΦ, or φ(x̃)>Σθφ(x̃). Let us define this inner product as
k(x, x′) = φ(x)>Σθφ(x′) as a kernel function (also known as a co-
variance function).

If one knew what the kernel function k(x, x′) was to begin with,
one could simply just compute that value instead of calculating the
feature vectors and make the prediction calculations with less com-
putations. This is known as the kernel trick and there exists quite a
few kernels that approximate an infinite set of feature vectors. Just
what are the conditions for a kernel you ask? Well, there is a theo-
rem called Mercer’s theorem that provides the conditions for which
an inner product over a set of feature vectors constitutes as a kernel
function. The most common one is the Radial Basis Function (RBF) or
squared exponential kernel, and believe it or not, this approximates
an infinite series of features given by

k(x, x′) = exp
(
−1

2
|x− x′|2

)
. (74)

The Gaussian Process Regressor Let us define the Gaussian process
where the random variable is the function f (x) where

m(x) = E [f (x)] (75)

is the mean function and

k(x, x′) = E
[
(f (x)−m(x))(f (x′)−m(x′))

]
(76)

is the covariance function. The Gaussian process is then written as

f (x) ∼ GP(m(x), k(x, x′)). (77)

If we look at the previous example for f (x) = φ(x)>θ where θ ∼
N (0, Σθ) we have for the mean and covariance

E [f (x)] = φ(x)>E [θ] = 0, (78)

78

E
[

f (x) f (x′)
]
= φ(x)>E

[
θθ>

]
φ(x′) = φ(x)>Σθφ(x′) = k(x, x′). (79)

We can see that a reasonable assumption is to have a zero mean and
the kernel function defined as our covariance. We can use this to
generate predictions by specifying the joint distribution from the data
set D as [

f
f̃

]
∼ N

(
0,

[
K(X, X) + σ2I ~k(x̃)

~k(x̃)> k(x̃, x̃)

])
(80)

where K(X, X) is a matrix of N × N covariance functions k(x, x′)
evaluated at the data points or more formally

K(X, X) =

k(x1, x1) k(x1, x2) . . . k(x1, xN)

k(x2, x1) k(x2, x2) . . . k(x1, xN)
...

. . .
k(xN , x1) k(xN , xN)

 , (81)

~k(x̃) ∈ RN is the vector of covariance functions k(x, x′) where each x
is evaluated at the data point and x′ is the new test point x̃:

~k(x̃) =
[
k(x1, x̃) k(x2, x̃) . . . k(xN , x̃)

]>
(82)

As done before, we can condition on the previous data points to
acquire a predictive posterior distribution where

f̃ | X,~y, x̃ ∼ N (~k(x̃)>(K(X, X)+σ2I)−1~y, k(x̃, x̃)−~k(x̃)>(K+σ2I)−1~k(x̃).).
(83)

Thus, predictions are of the form

f̃ =~k(x̃)>(K + σ2I)−1~y (84)

and the variance

V[f̃] = k(x̃, x̃)−~k(x̃)>(K + σ2I)−1~k(x̃). (85)

Notice that this has the exact form as Equation 69) which makes
sense since we have only redefined the inner product over a larger
function space as the kernel function. As an exercise, you should
be able to compute the Gaussian process for a set of data points
using the Radial Basis function (and another kernel function) and
provide the variance given the data points. One of the great things
about Gaussian processes is that you can sample directly on the
mean prediction and generate various different function samples
that approximate the data. Moreover, you can use the variance as a
measure for how certain a robot can be about a particular region of
space or a parameter (the choice of what the data represents is with
you).

79

Appendix

Sequential Action Control

(notes originally drafted by K. Fitzsimons in 2018)

Motivation

Up until this point we have discussed how one might generate a
curve of control values u(t) over an entire time horizon, which works
well in the simulated systems of the homework. However, if you are
interested in applying optimal control on a real system, we have two
issues to contend with. The first is that there is virtually no way that
our model of the system and the environment will capture the uncer-
tainties and perturbations that the robot will encounter. One might
hope that these perturbations are small enough that our open loop
solution for u(t) will work, or we can recalculate u(t) based on cur-
rent sensor(state) feedback. This brings us to our second problem,
the time it takes to calculate these control curves. On our real system
using our iterative methods to find an optimizer over the entire time
horizon may not be fast enough for us to recover from a perturbation.
In the worst case, our new u(t) will be completely outdated by the
time we have found it. To work around this, we can choose to only
calculate the open loop control for a very short time horizon into the
future or we can insist that our hardware have sufficient computa-
tional speed.

Alternatively, we can reframe the problem so that we are only
looking for what our next control action should be in the next ts sec-
onds, where ts = 1

SamplingRate . Rather than looking for a curve over
some window into the future we can search for a single action to
apply in that window. In other words, we will search for a control
action defined by a control vector, u∗2 , an application time τ, and an
application duration, λ. What we will find is that there is an analytic
solution for a schedule of optimal actions u∗2(τ), allowing us to per-
form a simple line search over the scalar τ and choose λ (also scalar)
by enforcing a descent condition.

Hybrid System Dynamics

Suppose we have a system of the form:

ẋ = f (x(t), u(t)).

The system may be nonlinear with respect to the state, but we will re-
strict ourselves to cases where, f is linear with respect to the control,

80

satisfying control-affine form.

f (t, x(t), u(t)) = g(x(t)) + h(x(t))u(t)

Given a nominal control, u = u1, the dynamics of the system can
be described by f1 , f (x(t), u1(t)). Suppose that we want to take a
single short action—perturbing the nominal dynamics—that improves
some cost of the form:

J1 =
∫ t f

t0

l1(x(t))dt + m(x(t f))

This will make the control look like,

u(t) =

u1(t) t < τ, t > τ + λ

u∗2(τ) τ ≤ t ≤ τ + λ 1 2 3 4 5 6
t(sec)

-5

5

10

Control Value

u1=Forward Velocity

u2=Turning Velocity

Figure 31: A Control signal for the
differential drive vehicle generate by
iLQR.

2 4 6 8
t(sec)

-5

5

Control Value

u1=Forward Velocity

u2=Turning Velocity

Figure 32: A Control signal for the
differential drive vehicle generate by
Sequential Action Control(right) and
iLQR(left).

1 2 3 4
x(t)

-0.5

0.5

1.0

1.5

2.0

y(t)

First Trajectory

Last Trajectory

Figure 33: A trajectory for the differen-
tial drive vehicle generate by iLQR.

1 2 3
x(t)

-1

1

2

3

y(t)

Figure 34: A trajectory for the differen-
tial drive vehicle generate by Sequential
Action Control.

We now have to find the control vector (u∗2(τ)), the time τ when
we want to apply the control, and the (short) control duration λ. The
system can now be described by,

x(t) =

x(0) +

∫ t
t0

f1(x(s))ds t0 ≤ t < τ

x(0) +
∫ τ

t0
f1(x(s))ds +

∫ t
τ f2(x(s))ds τ ≤ t ≤ τ + λ

x(0) +
∫ τ

t0
f1(x(s))ds +

∫ τ+λ
τ f2(x(s))ds +

∫ t
τ+λ f1(x(s))ds t > τ + λ

,

where f2 , f (x(t), u∗2(τ)).

The Mode Insertion Gradient

Rather than searching for the optimal control vector, application
time, and control duration simultaneously, we begin by assuming
that τ and f2 are known. Now we can model the change in cost of a
particular (τ, f2) by taking the derivative of J1 with respect to λ →
0+.

dJ1

dλ+
=
∫ t f

t0

∂l1(x(t))
∂x(t)

∂x(t)
∂λ+

dt

What does ∂x(t)
∂λ+ look like? Calculating this from the integral equation

for x(t) we get:

∂x(t)
∂λ+︸ ︷︷ ︸

z

=

0 t0 ≤ t < τ

0 τ ≤ t ≤ τ + λ

limλ→0+ f2(x(τ + λ))− f1(x(τ + λ))︸ ︷︷ ︸
zτ

+ t > τ + λ

∫ τ+λ
τ D f2(x(s))

∂x(t)
∂λ+︸ ︷︷ ︸

z

ds +
∫ t

τ+λ D f1(x(s))
∂x(t)
∂λ+︸ ︷︷ ︸

z

ds

(86)

81

Applying the limit λ → 0+, this equation for ∂x(t)
∂λ+ is the integral

form of differential equation for an LTV system:

ż =

0 t0 ≤ t < τ

Az(t) t ≥ τ
z(τ) = f2(x(τ))− f1(x(τ)), A = D f1(x(t))

(87)
Now we can write,

dJ1

dλ+
=
∫ t f

t0

∂l1(x(t))
∂x(t)

∂x(t)
∂λ+

dt =
∫ t f

τ

∂l1(x(t))
∂x(t)

z(t)dt,

where z is the solution to the linear differential equation above. Now
remember that we haven’t actually chosen a specific τ or u∗2(τ), so
for each choice of these two we would need to solve the differential
equation and integrate. Instead let’s use the state transition matrix for
z(t) in the LTV system in the dJ1

dλ+ .∫ t f

τ

∂l1(x(t))
∂x(t)

z(t)dt =
∫ t f

τ

∂l1(x(t))
∂x(t)

Φ(t, τ)[f2(x(τ))− f1(x(τ))]dt(88)

=
∫ t f

τ

∂l1(x(t))
∂x(t)

Φ(t, τ)dt︸ ︷︷ ︸
pT

[f2(x(τ))− f1(x(τ))](89)

The second step is possible because [f2(x(τ)) − f1(x(τ))] does not
depend on time. The other term is the convolution integral of a linear
affine system running backwards in time. If we call the state variable

for this convolution equation p =
∫ t f

τ ΦT(t, τ)
[

∂l1(x(t))
∂x(t)

]T
dt, we get

that

ṗ = −AT p− ∂l1(x(t))
∂x(t)

T

The final condition for this differential equation is p(t f) = 0N×1

if you have neglected the terminal cost m(x(t f)) in your cost J1 as
we did at the start of this derivation. If we had not we would have
p(t f) = Om(x(t f)). With this, we get the mode insertion gradient

dJ1

dλ+
(τ, u∗2(τ)) = pT [f2(x(τ))− f1(x(τ))].

Figure 35: A schedule of optimal
actions drives the mode insertion
gradient towards αd. The optimal
application time τ is when dJ1

dλ+ is most
negative. (From: Ansari & Murphey
2016)

Schedule of Optimal Actions

You can think of the mode insertion gradient as a measure of the
first-order sensitivity of the cost J1 to a perturbation of the control
u∗2(τ) at time τ for an infinitesimal duration. We want to choose a
control value and time that maximizes the cost sensitivity in the neg-
ative direction. We can do this by first finding a schedule of action
values u2(τ) that minimizes,

l2(τ, u2(τ)) =
1
2
[

dJ1

dλ+
(t, u2(τ))− αd]

2 +
1
2
||u2(τ)||2R,

82

where αd is the desired sensitivity.
If we evaluate the optimal schedule of actions u∗2 at any time τ ∈

(t0, t f) that value should minimize l2, so the entire schedule must
also minimize the infinite sum J2 of the costs associated with each
possible value of u∗2(τ).

J2 =
∫ t f

t0

l2(t, u2(t))dt

In dJ1
dλ+ , x depends only on u1, so unlike the minimization of ζ in

Lecture 3, there is no constraint associated with the minimization of
J2. We can now take the directional derivative and set it equal to zero
to find our minimizer. This gives us an analytic solution for u∗2 .

DJ2 · η(t) =
d
dε

∫ t f

t0

l2(t, u2(t) + εη(t))dt|ε=0 (90)

=
∫ t f

t0

∂l2(t, u∗2(t))
∂u2(t)

η(t)dt = 0 ∀η (91)

∂l2(t, u∗2(t))
∂u2(t)

= 0 (92)

∂l2
∂u2

= (pTh(x)[u∗2 − u1]− αd)pTh(x) + u∗T2 R = 0 (93)

u∗2(τ) = (Λ + RT)−1[Λu1 + h(x)T p αd] (94)

where Λ , h(x)T ppTh(x). This gives use a schedule of actions from
which to choose the next control. Although we included a cost on
the magnitude of u2 this doesn’t guarantee that the control vector
will obey the saturation limits of the system. However, it turns out
that control vectors computed from the analytic solution are affine
with respect to αd and linear when u1 = 0, so scaling αd produces
actions that are scaled linearly. This implies that if any component of
the control vector violated the saturation limits, we can choose a new
αd to satisfy the constraint. This may produce overly conservative
controls when only one element of a multidimensional control vector
violates a constraint, but we can also apply scaling element-wise
while still producing an action capable of reducing the cost J1.

Application Time and Duration

We still need to choose our application time τ and a duration λ. We
can use a very small sampling time ts and choose to just apply the
next control based on the schedule at τ = t0 + ts for ts seconds.
Alternatively, we can apply the entire schedule as a descent direction.
Finally, we can find τ using an optimization, which we will discuss
below.

We now introduce one final cost function to find the time τ at
which we can be most effective in applying our single control. Again,

83

we want to minimize dJ1
dλ+ with an additional cost on the control effort

and the cost of waiting to apply a control.

Jτ = ||u∗2(τ)||+
dJ1

dλ+
+ (t− t0)

β, β > 0

Depending on the coding language you are using, there are many
ways to find the optimizer. Something like MATLAB’s fmincon or
Mathematica’s Minimize would work here. You can also be creative
and create your own minimization function.

Up until this point, we have assumed we are applying control for
an infinitely short duration, but assuming we want this to work in
the real world we will have to choose a λ > 0. We do this using a line
search with a simple descent condition. Alternatively, you can just
choose a very small ts and apply control

Algorithm Design Choices

For finite durations, our model of the change in cost is locally de-
scribed by,

∆J1 ≈
dJ1

dλ+
(τ, u∗2(τ))λ.

Our optimization over u∗2 regulates the mode insertion gradient such
that,

dJ1

dλ+
(τ, u∗2(τ)) ≈ αd

Therefore, these two parameters allow us to specify the degree of
change provided by each action.

∆J1 ≈ αdλ

A high αd will lead to aggressive actions by the controller that are
often saturated and make dramatic changes in the cost. While any
negative number should work, it is often helpful to specify αd as a
feedback law,

αd = γJ1,init,

where γ ∈ [−15,−1] works well. Given a specified αd and a corre-
sponding u∗2(τ) we can choose λ using a line search with a descent
condition requiring a minimum ∆Jmin, which can be specified as a
(negative) percentage of the initial value of J1.

Finally, β in the optimization of τ is often in the range of (0.5, 2)
but any β > 0 will work.

84

SAC Pseudocode

Algorithm 5: Sequential Action Control
Initialize αd, minimum change in cost ∆Jmin, current time tcurr,
default control duration ∆tinit, nominal control u1, scale factor
ω ∈ (0, 1), predictive horizon T, sampling time ts, the max time for
iterative control calculations tcalc, and the max backtracking
iterations kmax.

while tcurr < ∞ do
(t0, t f) = (tcurr, tcurr + T)

3: Use feedback to initialize xinit = x(t0)

Simulate (x, p) from f1 for t ∈ [t0, t f]

Compute initial cost J1,init

6: Specify αd

Compute u∗2 from (x, p) using Theorem 1:
u∗2 = (Λ + RT)−1[Λu1 + h(x)T pαd]

9: Λ , h(x)T ppTh(x)
Specify/search for time, τ > t0 + tcalc, to apply u∗2
Saturate u∗2(τ)

12: Initialize k = 0, J1,new = ∞
while J1,new − J1,init > ∆Jmin and k ≤ kmax do

λ = ωk∆tinit

15: (τ0, τf) = (τ − λ
2 , τ + λ

2)

Re-simulate x applying f2 for t ∈ [τ0, τf]

Compute new cost J1,new

18: k = k + 1
end while
u1(t) = u∗2(τ) ∀ t ∈ [τ0, τf] ∩ [t0 + tcalc, t0 + ts + tcalc]

21: Send updated u1 to robot
while tcurr < t0 + ts do

Wait()
24: end while

end while

	Introduction
	Optimal Control: Dynamics and Direct Methods
	Integral Equations and Nonlinear Iterative Optimization
	State Transition, Convolution, and Riccati Equations
	Iterative Optimization, Maximum Principle, and Two Point Boundary Value Problems
	Probability
	Beliefs and Particle Filters
	Kalman Filters
	Entropy
	Maximum Likelihood & Fisher Information
	Posterior Probabilities & Infotaxis
	Ergodicity
	A Geometry Perspective of Ergodic Metric
	Control Synthesis for Ergodic Objectives
	Nonparametric vs. Parametric Estimation/Models
	Moving onto Function Approximation
	Appendix
	Sequential Action Control

